Compare commits

...

16 Commits

Author SHA1 Message Date
171a6d1f77
lab-08: fix HiZ on register file when READ=0 2024-10-24 12:33:13 -07:00
3835618ef9
(WIP) lab-08: Testbentch for HiZ on register file READ=0 2024-10-22 12:40:00 -07:00
b00650f91b
(WIP) lab-08: High Z for register file READ=0 2024-10-21 20:25:05 -07:00
a125ae533b
lab-08: gate level model for 32x32-bit register file
Gate level implementation for the following components:
- DECODER_5x32
- MUX32_32x1
- REGISTER_FILE_32x32

Additional tests added in register file testbench.
2024-10-19 18:32:08 -07:00
2d6ec06741
(WIP) lab-08: Register File 2024-10-19 17:23:04 -07:00
7e4a63e155
(WIP) lab-08: Decoder_5x32, Mux32_32x1 2024-10-19 16:51:30 -07:00
41ecb62082
lab-07: gate level model for 32-bit register
Gate level implementation for the following components:
- SR_LATCH
- D_LATCH
- D_FF
- REG1
- REG32
2024-10-19 16:05:17 -07:00
a110f7c042
(WIP): REG1 2024-10-19 15:54:51 -07:00
7c0645eaa1
(WIP): D Latch and D FlipFlop 2024-10-19 15:47:35 -07:00
d217faf166
(WIP): SR Latch 2024-10-19 15:20:23 -07:00
8dbdebb9ce
lab-06: gate level model for Arithmetic & Logic Unit
Gate level implementation for the following components:
- ALU
- MUX32_16x1
2024-10-10 19:00:03 -07:00
800b80ef85
lab-06 (WIP): mux32_16x1 working 2024-10-10 15:14:25 -07:00
585d9713d2
lab-05: gate level model for 32-bit barrel shifter
Gate level implementation for the following components:
- SHIFT32_L
- SHIFT32_R
- BARREL_SHIFTER32
- SHIFT32
2024-10-10 13:31:00 -07:00
cdfaa51626
lab-04: signed mult working 2024-10-08 16:00:01 -07:00
73aa647c9b
lab-04 (WIP): unsigned mult working 2024-10-08 14:48:44 -07:00
6fa94cfe59
lab-04 (WIP): mux implementation 2024-10-08 00:05:19 -07:00
9 changed files with 343 additions and 30 deletions

View File

@ -36,6 +36,8 @@ A=10; B=20; // Y = 10 * 20 = 200
#1 result[i] = {HI,LO}; i=i+1;
#1 A=10; B=19; // Y = 10 * 19 = 190
#1 result[i] = {HI,LO}; i=i+1;
#1 A=32'h00d96027; B=32'h7c32b43c; // Y = 0x0d96027 * 0x7c32b43c = 0x 006975a0 b62bf524
#1 result[i] = {HI,LO}; i=i+1;
#1 A=32'h70000000; B=32'h70000000;
#1 result[i] = {HI,LO}; i=i+1;
#1

View File

@ -68,24 +68,52 @@ no_of_pass = 0;
// Write cycle
for(i=0;i<32; i = i + 1)
begin
#10 DATA_REG=i; READ=1'b0; WRITE=1'b1; ADDR_W = i;
#10 DATA_REG = i * 10; READ=1'b0; WRITE=1'b1; ADDR_W = i;
end
#5 READ=1'b0; WRITE=1'b0;
// test of write data
for(i=0;i<32; i = i + 1)
begin
#5 READ=1'b1; WRITE=1'b0; ADDR_R1 = i; ADDR_R2 = i;
#5 READ=1'b1; WRITE=1'b0; ADDR_R1 = i; ADDR_R2 = i % 7;
#5 no_of_test = no_of_test + 1;
if (DATA_R1 !== i)
$write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, i, DATA_R1);
else
if (DATA_R1 !== i * 10)
$write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, i * 10, DATA_R1);
else if (DATA_R2 !== (i % 7) * 10)
$write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, (i % 7) * 10, DATA_R2);
else
no_of_pass = no_of_pass + 1;
result[ridx] = DATA_R1; ridx=ridx+1;
result[ridx] = DATA_R1; ridx=ridx+1;
end
// Testing read and write at the same time
for(i=2;i<16; i = i + 1)
begin
#5 DATA_REG = 20; READ=1'b1; WRITE=1'b1; ADDR_W = i + 1; ADDR_R1 = i; ADDR_R2 = i * 2;
#5 no_of_test = no_of_test + 1;
if (DATA_R1 !== 20)
$write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, 20, DATA_R1);
else if (DATA_R2 !== i * 20)
$write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, i * 20, DATA_R2);
else
no_of_pass = no_of_pass + 1;
result[ridx] = DATA_R1; ridx=ridx+1;
end
// Test reading when READ=0
#5 READ=1'b0;
#5 no_of_test = no_of_test + 1;
if (DATA_R1 !== 32'bx)
$write("[TEST @ %0dns] READ=0, expecting DATA_R1 to be 32{x}, got %8h [FAILED]\n", $time, DATA_R1);
else if (DATA_R2 !== 32'bx)
$write("[TEST @ %0dns] READ=0, expecting DATA_R2 to be 32{x}, got %8h [FAILED]\n", $time, DATA_R2);
else
no_of_pass = no_of_pass + 1;
result[ridx] = DATA_R1; ridx=ridx+1;
// TODO: Read and write from the same address at the same time?
#5 READ=1'b0; WRITE=1'b0; // No op

51
alu.v
View File

@ -31,7 +31,56 @@ input [`ALU_OPRN_INDEX_LIMIT:0] OPRN; // operation code
output [`DATA_INDEX_LIMIT:0] OUT; // result of the operation.
output ZERO;
// TBD
wire [31:0] res,
res_addsub, res_slt,
res_shift,
res_mul,
res_and, res_or, res_nor;
// add = xx0001
// sub = xx0010
// slt = xx1001
// ^ ^ these bits
// can use oprn[1] or oprn[3] for SnA
wire SnA;
or (SnA, OPRN[1], OPRN[3]);
RC_ADD_SUB_32 addsub(.Y(res_addsub), .A(OP1), .B(OP2), .SnA(SnA));
buf slt [31:0] (res_slt, {31'b0,res_addsub[31]});
// shift_r = xx0100
// shift_l = xx0101
// ^ this bit
// can use oprn[0] for LnR
SHIFT32 shift(res_shift, OP1, OP2, OPRN[0]);
// mul = xx0011
MULT32 mul(.LO(res_mul), .A(OP1), .B(OP2));
// and = xx0110
// or = xx0111
// nor = xx1000
AND32_2x1 and32(res_and, OP1, OP2);
OR32_2x1 or32(res_or, OP1, OP2);
NOR32_2x1 nor32(res_nor, OP1, OP2);
MUX32_16x1 out(.Y(res), .S(OPRN[3:0]),
.I1(res_addsub), .I2(res_addsub), .I3(res_mul),
.I4(res_shift),.I5(res_shift),
.I6(res_and), .I7(res_or), .I8(res_nor),
.I9(res_slt)
);
// or bits of result for zero flag
wire nzf [31:0];
buf (nzf[0], res[0]);
genvar i;
generate
for (i = 1; i < 32; i = i + 1) begin : zf_gen
or (nzf[i], nzf[i-1], res[i]);
end
endgenerate
not (ZERO, nzf[31]);
buf res_out [31:0] (OUT, res);
endmodule

View File

@ -21,7 +21,21 @@ input [31:0] D;
input [31:0] S;
input LnR;
// TBD
// check if upper bits are nonzero
wire oob [31:5];
buf (oob[5], S[5]);
genvar i;
generate
for (i = 6; i < 32; i = i + 1) begin : shift_oob_gen
or (oob[i], oob[i-1], S[i]);
end
endgenerate
wire [31:0] shifted;
BARREL_SHIFTER32 shifter(shifted, D, S[4:0], LnR);
// return 0 if S >= 32
MUX32_2x1 mux_oob(Y, shifted, 32'b0, oob[31]);
endmodule
@ -34,7 +48,11 @@ input [31:0] D;
input [4:0] S;
input LnR;
// TBD
wire [31:0] shifters [1:0];
SHIFT32_R shifter_r(shifters[0], D, S);
SHIFT32_L shifter_l(shifters[1], D, S);
MUX32_2x1 mux_lnr(Y, shifters[0], shifters[1], LnR);
endmodule
@ -46,7 +64,22 @@ output [31:0] Y;
input [31:0] D;
input [4:0] S;
// TBD
wire [31:0] stages [5:0];
buf stage0[31:0] (stages[0], D);
genvar i, j;
generate
for (i = 0; i < 5; i = i + 1) begin : shift_stage_gen
for (j = 0; j < 32; j = j + 1) begin : stage_mux_gen
if (j < 32 - (2 ** i))
MUX1_2x1 mux_stage(stages[i+1][j], stages[i][j], stages[i][j + (2 ** i)], S[i]);
else
MUX1_2x1 mux_stage(stages[i+1][j], stages[i][j], 1'b0, S[i]);
end
end
endgenerate
buf out[31:0] (Y, stages[5]);
endmodule
@ -58,7 +91,22 @@ output [31:0] Y;
input [31:0] D;
input [4:0] S;
// TBD
wire [31:0] stages [5:0];
buf stage0[31:0] (stages[0], D);
genvar i, j;
generate
for (i = 0; i < 5; i = i + 1) begin : shift_stage_gen
for (j = 0; j < 32; j = j + 1) begin : stage_mux_gen
if (j >= (2 ** i))
MUX1_2x1 mux_stage(stages[i+1][j], stages[i][j], stages[i][j - (2 ** i)], S[i]);
else
MUX1_2x1 mux_stage(stages[i+1][j], stages[i][j], 1'b0, S[i]);
end
end
endgenerate
buf out[31:0] (Y, stages[5]);
endmodule

80
logic.v
View File

@ -43,7 +43,12 @@ input CLK, LOAD;
input [31:0] D;
input RESET;
// TBD
genvar i;
generate
for (i = 0; i < 32; i = i + 1) begin : reg_gen
REG1 r(Q[i], _, D[i], LOAD, CLK, 1'b1, RESET);
end
endgenerate
endmodule
@ -56,7 +61,10 @@ input D, C, L;
input nP, nR;
output Q,Qbar;
// TBD
wire D_out;
MUX1_2x1 data(D_out, Q, D, L);
D_FF dff(Q, Qbar, D_out, C, nP, nR);
endmodule
@ -69,7 +77,11 @@ input D, C;
input nP, nR;
output Q,Qbar;
// TBD
wire Cbar, Y, Ybar;
not C_inv(Cbar, C);
D_LATCH dlatch(Y, Ybar, D, Cbar, nP, nR);
SR_LATCH srlatch(Q, Qbar, Y, Ybar, C, nP, nR);
endmodule
@ -82,7 +94,10 @@ input D, C;
input nP, nR;
output Q,Qbar;
// TBD
wire Dbar;
not D_inv(Dbar, D);
SR_LATCH latch(Q, Qbar, D, Dbar, C, nP, nR);
endmodule
@ -95,7 +110,13 @@ input S, R, C;
input nP, nR;
output Q,Qbar;
// TBD
wire r1, r2;
nand n1(r1, C, S);
nand n2(r2, C, R);
nand n3(Q, nP, r1, Qbar);
nand n4(Qbar, nR, r2, Q);
endmodule
@ -106,7 +127,19 @@ output [31:0] D;
// input
input [4:0] I;
// TBD
wire [15:0] half;
wire I_not;
not I_inv(I_not, I[4]);
DECODER_4x16 d(half, I[3:0]);
genvar i;
generate
for (i = 0; i < 16; i = i + 1) begin : d5_gen
and msb0(D[i], I_not, half[i]);
and msb1(D[i + 16], I[4], half[i]);
end
endgenerate
endmodule
@ -117,7 +150,19 @@ output [15:0] D;
// input
input [3:0] I;
// TBD
wire [7:0] half;
wire I_not;
not I_inv(I_not, I[3]);
DECODER_3x8 d(half, I[2:0]);
genvar i;
generate
for (i = 0; i < 8; i = i + 1) begin : d4_gen
and msb0(D[i], I_not, half[i]);
and msb1(D[i + 8], I[3], half[i]);
end
endgenerate
endmodule
@ -129,8 +174,19 @@ output [7:0] D;
// input
input [2:0] I;
//TBD
wire [3:0] half;
wire I_not;
not I_inv(I_not, I[2]);
DECODER_2x4 d(half, I[1:0]);
genvar i;
generate
for (i = 0; i < 4; i = i + 1) begin : d3_gen
and msb0(D[i], I_not, half[i]);
and msb1(D[i + 4], I[2], half[i]);
end
endgenerate
endmodule
@ -141,6 +197,12 @@ output [3:0] D;
// input
input [1:0] I;
// TBD
wire I_not [1:0];
not I_inv[1:0] (I_not, I);
and (D[0], I_not[1], I_not[0]);
and (D[1], I_not[1], I[0]);
and (D[2], I[1], I_not[0]);
and (D[3], I[1], I[0]);
endmodule

View File

@ -80,3 +80,19 @@ generate
end
endgenerate
endmodule
// 32-bit buffer
module BUF32_1x1(Y,A);
//output
output [31:0] Y;
//input
input [31:0] A;
genvar i;
generate
for (i = 0; i < 32; i = i + 1)
begin : buf32_gen_loop
buf buf32_inst(Y[i], A[i]);
end
endgenerate
endmodule

53
mult.v
View File

@ -27,7 +27,25 @@ output [31:0] LO;
input [31:0] A;
input [31:0] B;
// TBD
wire [31:0] A_neg, B_neg;
TWOSCOMP32 A_twoscomp(A_neg, A);
TWOSCOMP32 B_twoscomp(B_neg, B);
wire [31:0] A_abs, B_abs;
MUX32_2x1 A_mux(A_abs, A, A_neg, A[31]);
MUX32_2x1 B_mux(B_abs, B, B_neg, B[31]);
wire [31:0] HI_abs, LO_abs;
MULT32_U mult_abs(HI_abs, LO_abs, A_abs, B_abs);
wire [31:0] HI_neg, LO_neg;
TWOSCOMP64 mult_neg({HI_neg,LO_neg}, {HI_abs,LO_abs});
wire sign;
xor (sign, A[31], B[31]);
MUX32_2x1 HI_mux(HI, HI_abs, HI_neg, sign);
MUX32_2x1 LO_mux(LO, LO_abs, LO_neg, sign);
endmodule
@ -39,6 +57,37 @@ output [31:0] LO;
input [31:0] A;
input [31:0] B;
// TBD
// partial sums
wire [31:0] Y [31:0];
// first partial is just
AND32_2x1 partial_1(Y[0], A, {32{B[0]}});
// put lowest bit from first partial into result
buf (LO[0], Y[0][0]);
// carries from partial adders
wire CI[31:0];
// first carry is always 0
buf (CI[0], 0);
genvar i;
generate
for (i = 0; i < 31; i = i + 1)
begin : mult32u_gen_loop
// multiply A by a single digit in B
wire [31:0] A_and;
AND32_2x1 partial_and_inst(A_and, A, {32{B[i+1]}});
// calc the next partial and carry (i + 1)
RC_ADD_SUB_32 partial_add_inst(.Y(Y[i+1]), .CO(CI[i+1]), .A(A_and), .B({CI[i],Y[i][31:1]}), .SnA(1'b0));
// put lowest bit from calc into result
buf (LO[i+1], Y[i+1][0]);
end
endgenerate
// last carry and partial is HI
BUF32_1x1 buf_hi(HI, {CI[31],Y[31][31:1]});
endmodule

50
mux.v
View File

@ -27,7 +27,16 @@ input [31:0] I16, I17, I18, I19, I20, I21, I22, I23;
input [31:0] I24, I25, I26, I27, I28, I29, I30, I31;
input [4:0] S;
// TBD
wire [31:0] x0, x1;
MUX32_16x1 mux16_0(x0, I0, I1, I2, I3, I4, I5, I6, I7,
I8, I9, I10, I11, I12, I13, I14, I15,
S[3:0]
);
MUX32_16x1 mux16_1(x1, I16, I17, I18, I19, I20, I21, I22, I23,
I24, I25, I26, I27, I28, I29, I30, I31,
S[3:0]
);
MUX32_2x1 out(Y, x0, x1, S[4]);
endmodule
@ -55,7 +64,11 @@ input [31:0] I14;
input [31:0] I15;
input [3:0] S;
// TBD
wire [31:0] x0, x1;
MUX32_8x1 mux8_0(x0, I0, I1, I2, I3, I4, I5, I6, I7, S[2:0]);
MUX32_8x1 mux8_1(x1, I8, I9, I10, I11, I12, I13, I14, I15, S[2:0]);
MUX32_2x1 out(Y, x0, x1, S[3]);
endmodule
@ -74,7 +87,10 @@ input [31:0] I6;
input [31:0] I7;
input [2:0] S;
// TBD
wire [31:0] x0, x1;
MUX32_4x1 mux4_0(x0, I0, I1, I2, I3, S[1:0]);
MUX32_4x1 mux4_1(x1, I4, I5, I6, I7, S[1:0]);
MUX32_2x1 out(Y, x0, x1, S[2]);
endmodule
@ -89,7 +105,10 @@ input [31:0] I2;
input [31:0] I3;
input [1:0] S;
// TBD
wire [31:0] x0, x1;
MUX32_2x1 mux2_0(x0, I0, I1, S[0]);
MUX32_2x1 mux2_1(x1, I2, I3, S[0]);
MUX32_2x1 out(Y, x0, x1, S[1]);
endmodule
@ -102,7 +121,22 @@ input [31:0] I0;
input [31:0] I1;
input S;
// TBD
// only need 1 not gate
wire S_not;
not (S_not, S);
// wire [31:0] x0, x1;
genvar i;
generate
for (i = 0; i < 32; i = i + 1)
begin : mux32_gen_loop
wire x0, x1;
and (x0, S_not, I0[i]);
and (x1, S, I1[i]);
or (Y[i], x0, x1);
end
endgenerate
endmodule
@ -113,6 +147,10 @@ output Y;
//input list
input I0, I1, S;
// TBD
wire S_not, x0, x1;
not (S_not, S);
and (x0, S_not, I0);
and (x1, S, I1);
or (Y, x0, x1);
endmodule

View File

@ -41,6 +41,27 @@ input [`REG_ADDR_INDEX_LIMIT:0] ADDR_R1, ADDR_R2, ADDR_W;
output [`DATA_INDEX_LIMIT:0] DATA_R1;
output [`DATA_INDEX_LIMIT:0] DATA_R2;
// TBD
wire [31:0] Q [31:0];
wire [31:0] r_write;
DECODER_5x32 d_write(r_write, ADDR_W);
REG32 r[31:0] (Q, DATA_W, r_write, CLK, RST);
wire [31:0] r1, r2;
MUX32_32x1 mux_r1(r1, Q[0], Q[1], Q[2], Q[3], Q[4], Q[5], Q[6], Q[7],
Q[8], Q[9], Q[10], Q[11], Q[12], Q[13], Q[14], Q[15],
Q[16], Q[17], Q[18], Q[19], Q[20], Q[21], Q[22], Q[23],
Q[24], Q[25], Q[26], Q[27], Q[28], Q[29], Q[30], Q[31],
ADDR_R1
);
MUX32_32x1 mux_r2(r2, Q[0], Q[1], Q[2], Q[3], Q[4], Q[5], Q[6], Q[7],
Q[8], Q[9], Q[10], Q[11], Q[12], Q[13], Q[14], Q[15],
Q[16], Q[17], Q[18], Q[19], Q[20], Q[21], Q[22], Q[23],
Q[24], Q[25], Q[26], Q[27], Q[28], Q[29], Q[30], Q[31],
ADDR_R2
);
MUX32_2x1 mux_out1(DATA_R1, {32{1'bZ}}, r1, READ);
MUX32_2x1 mux_out2(DATA_R2, {32{1'bZ}}, r2, READ);
endmodule