14 Commits

Author SHA1 Message Date
02781c283f project: add da vinci test programs 2024-11-16 16:49:44 -08:00
88b635122f (WIP) control unit: initial implementation of things 2024-11-12 18:02:06 -08:00
d10a3d6130 data path: fix port connection warnings 2024-11-12 13:38:37 -08:00
a2d547df45 data path: initial gate level implementation 2024-11-12 13:12:58 -08:00
ff1c1630b2 data path: add initial wires and buffers 2024-11-12 13:12:58 -08:00
ff6e7792f4 misc: fix unconnected port warnings for ALU and TWOSCOMP 2024-11-12 13:11:48 -08:00
9584db84fd logic: add 32-bit register with parameterized preset pattern 2024-11-12 13:11:45 -08:00
dbc23d80e4 lab-08: fix register file - disable writing when WRITE=0 2024-10-24 23:11:59 -07:00
c3da7787d3 lab-08: fix HiZ on register file when READ=0 2024-10-24 12:35:34 -07:00
eca53c1104 lab-08: gate level model for 32x32-bit register file
Gate level implementation for the following components:
- DECODER_5x32
- MUX32_32x1
- REGISTER_FILE_32x32

Additional tests added in register file testbench.
2024-10-19 18:39:35 -07:00
3091103f81 lab-07: gate level model for 32-bit register
Gate level implementation for the following components:
- SR_LATCH
- D_LATCH
- D_FF
- REG1
- REG32
2024-10-19 18:39:30 -07:00
cce0c524d9 lab-06: gate level model for Arithmetic & Logic Unit
Gate level implementation for the following components:
- ALU
- MUX32_16x1
2024-10-19 18:39:23 -07:00
1ab4ea027d lab-05: gate level model for 32-bit barrel shifter
Gate level implementation for the following components:
- SHIFT32_L
- SHIFT32_R
- BARREL_SHIFTER32
- SHIFT32
2024-10-19 18:39:16 -07:00
5a4b5a312a lab-04: gate level model for 32-bit signed multiplier
Gate level implementation for the following components:
- MULT32_U
- MULT32
- MUX32_2x1
2024-10-19 18:39:02 -07:00
31 changed files with 1055 additions and 34 deletions

4
.gitignore vendored
View File

@@ -27,3 +27,7 @@ sc_dpiheader.h
vsim.dbg vsim.dbg
# End of https://www.toptal.com/developers/gitignore/api/modelsim # End of https://www.toptal.com/developers/gitignore/api/modelsim
!TESTPROGRAM/*.dat
!GOLDEN/*.dat
!OUTPUT/*.dat

View File

@@ -0,0 +1,13 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000020
00000020
00000010
00000010
00000009
00000008
00000008
00000005
00000004
00000002

View File

@@ -0,0 +1,9 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000001
00000004
00000004
00000010
00000010
00000000

View File

@@ -0,0 +1,9 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000000
00000020
00000008
00000008
00000002
00000002

View File

@@ -0,0 +1,14 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000015
00000017
00000019
0000001b
0000001d
0000001f
00000021
00000023
00000025
00000025
00000000

View File

@@ -0,0 +1,19 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
ffffffc9
00000022
ffffffeb
0000000d
fffffff8
00000005
fffffffd
00000002
ffffffff
00000001
00000000
00000001
00000001
00000002
00000003
00000005

View File

@@ -0,0 +1,19 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000000
00000001
00000001
00000002
00000003
00000005
00000008
0000000d
00000015
00000022
00000037
00000059
00000090
000000e9
00000179
00000262

View File

@@ -0,0 +1,13 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

View File

@@ -0,0 +1,14 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
0000000a
0000000b
0000000c
0000000d
0000000e
0000000f
00000010
00000011
00000012
00000013
00000000

View File

@@ -0,0 +1,19 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

View File

@@ -0,0 +1,19 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/DA_VINCI_TB/da_vinci_inst/memory_inst/memory_inst/sram_32x64m
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

11
OUTPUT/full_adder.out Normal file
View File

@@ -0,0 +1,11 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/FULL_ADDER_TB/result
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000000
00000001
00000001
00000002
00000001
00000002
00000002
00000003

7
OUTPUT/half_adder.out Normal file
View File

@@ -0,0 +1,7 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/HALF_ADDER_TB/results
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000000
00000001
00000001
00000002

11
OUTPUT/mult32_tb.out Normal file
View File

@@ -0,0 +1,11 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/MULT_TB/result
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000000000000c8
000000000000002d
ffffffffffffff90
ffffffffffffff42
3100000000000000
cf00000000000000
cf00000000000000
3100000000000000

8
OUTPUT/mult32_u_tb.out Normal file
View File

@@ -0,0 +1,8 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/MULT_U_TB/result
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
00000000000000c8
000000000000002d
0000000000000070
00000000000000be
006975a0b62bf524

8
OUTPUT/rc_add_sub_32.out Normal file
View File

@@ -0,0 +1,8 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/RC_ADD_SUB_32_TB/result
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
0000001e
fffffff6
00000003
00000004
00005555

5
OUTPUT/twoscomp32_tb.out Normal file
View File

@@ -0,0 +1,5 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/TWOSCOMP32_TB/result
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
fffffff6
00000005

5
OUTPUT/twoscomp64_tb.out Normal file
View File

@@ -0,0 +1,5 @@
// memory data file (do not edit the following line - required for mem load use)
// instance=/TWOSCOMP64_TB/result
// format=hex addressradix=h dataradix=h version=1.0 wordsperline=1 noaddress
fffffffffffffff6
0000000000000005

View File

@@ -68,24 +68,53 @@ no_of_pass = 0;
// Write cycle // Write cycle
for(i=0;i<32; i = i + 1) for(i=0;i<32; i = i + 1)
begin begin
#10 DATA_REG=i; READ=1'b0; WRITE=1'b1; ADDR_W = i; #10 DATA_REG = i * 10; READ=1'b0; WRITE=1'b1; ADDR_W = i;
end end
#5 READ=1'b0; WRITE=1'b0; #5 READ=1'b0; WRITE=1'b0;
// test of write data // test of write data
for(i=0;i<32; i = i + 1) for(i=0;i<32; i = i + 1)
begin begin
#5 READ=1'b1; WRITE=1'b0; ADDR_R1 = i; ADDR_R2 = i; #5 READ=1'b1; WRITE=1'b0; ADDR_R1 = i; ADDR_R2 = i % 7;
#5 no_of_test = no_of_test + 1; #5 no_of_test = no_of_test + 1;
if (DATA_R1 !== i) if (DATA_R1 !== i * 10)
$write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, i, DATA_R1); $write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, i * 10, DATA_R1);
else if (DATA_R2 !== (i % 7) * 10)
$write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, (i % 7) * 10, DATA_R2);
else else
no_of_pass = no_of_pass + 1; no_of_pass = no_of_pass + 1;
result[ridx] = DATA_R1; ridx=ridx+1; result[ridx] = DATA_R1; ridx=ridx+1;
result[ridx] = DATA_R1; ridx=ridx+1;
end end
// Testing read and write at the same time
for(i=2;i<16; i = i + 1)
begin
#5 DATA_REG = 20; READ=1'b1; WRITE=1'b1; ADDR_W = i + 1; ADDR_R1 = i; ADDR_R2 = i * 2;
#5 no_of_test = no_of_test + 1;
if (DATA_R1 !== 20)
$write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, 20, DATA_R1);
else if (DATA_R2 !== i * 20)
$write("[TEST @ %0dns] Read %1b, Write %1b, expecting %8h, got %8h [FAILED]\n", $time, READ, WRITE, i * 20, DATA_R2);
else
no_of_pass = no_of_pass + 1;
result[ridx] = DATA_R1; ridx=ridx+1;
end
// Test reading when READ=0
#5 READ=1'b0;
#5 no_of_test = no_of_test + 1;
if (DATA_R1 !== 32'bx)
$write("[TEST @ %0dns] READ=0, expecting DATA_R1 to be 32{x}, got %8h [FAILED]\n", $time, DATA_R1);
else if (DATA_R2 !== 32'bx)
$write("[TEST @ %0dns] READ=0, expecting DATA_R2 to be 32{x}, got %8h [FAILED]\n", $time, DATA_R2);
else
no_of_pass = no_of_pass + 1;
result[ridx] = DATA_R1; ridx=ridx+1;
// TODO: Read and write from the same address at the same time?
// TODO: Write when WRITE=0 should be tested
#5 READ=1'b0; WRITE=1'b0; // No op #5 READ=1'b0; WRITE=1'b0; // No op

View File

@@ -0,0 +1,45 @@
// ------ Program Part ----
@0001000
2021000A // addi r1, r1, 0xA;
20421008 // addi r2, r2, 0x1008;
00401301 // sll r2, r2, 0xC;
00411820 // add r3, r2, r1;
3C848000 // lui r4, r4, 0x8000;
8C450000 // LOOP: lw r5, r2,0x0;
8C660000 // lw r6, r3, 0x0;
00A63822 // sub r7, r5, r6;
00E44024 // and r8, r7, r4;
15280003 // bne r8, r9, L1;
20C00000 // addi r0, r6, 0x0;
20630001 // addi r3, r3, 0x1;
0800100F // jmp L2;
20A00000 // L1: addi r0, r5, 0x0;
20420001 // addi r2, r2, 0x1;
6C000000 // L2: push
2021FFFF // addi r1, r1, 0xFFFF;
1521FFF3 // bne r1, r9, LOOP;
// ------ Data Part ----
@01008000
005 // 01008000
008 // 01008001
009 // 01008002
010 // 01008003
020 // 01008004
029 // 01008005
02D // 01008006
02F // 01008007
032 // 01008008
037 // 01008009
002 // 0100800A
004 // 0100800B
008 // 0100800C
010 // 0100800D
020 // 0100800E
040 // 0100800F
080 // 01008010
100 // 01008011
200 // 01008012
400 // 01008013

View File

@@ -0,0 +1,21 @@
@0001000
20000001 // addi r0, r0, 0x1;
20210002 // addi r1, r1, 0x2;
20420000 // addi r2, r2, 0x0;
3C630100 // lui r3, 0x100;
34638000 // ori r3, r3, 0x8000;
20840005 // addi r4, r4, 0x5;
00010020 // LOOP: add r0, r0, r1;
00010822 // sub r1, r0, r1;
00010022 // sub r0, r0, r1;
AC610000 // sw r1, r3, 0x0;
20630001 // addi r3, r3, 0x1;
6C000000 // push;
00000041 // sll r0, r0, 0x1;
00200841 // sll r1, r1, 0x1;
20420001 // addi r2, r2, 0x1;
1482FFF6 // bne r2, r4, LOOP;

View File

@@ -0,0 +1,28 @@
// ------ Program Part ----
@0001000
20001008 // addi r0, r0, 0x1008
00000301 // sll r0, r0, 0xC
20420009 // addi r2, r2, 0x9
10410007 // LOOP: beq r1, r2, END
8C030000 // lw r3, r0, 0x0
8C040001 // lw r4, r0, 0x1
00642820 // add r5, r3, r4
AC050000 // sw r5, r0, 0x0
20000001 // addi r0, r0, 0x1
20210001 // addi r1, r1, 0x1
08001003 // j LOOP
AC050000 // END: sw r5, r0, 0x0
// ------ Data Part ----
@01008000
0A // 0100 8000
0B // 0100 8001
0C // 0100 8002
0D // 0100 8003
0E // 0100 8004
0F // 0100 8005
10 // 0100 8006
11 // 0100 8007
12 // 0100 8008
13 // 0100 8008

16
TESTPROGRAM/RevFib.dat Normal file
View File

@@ -0,0 +1,16 @@
@0001000
20210005 // addi r1, r1, 0x5
20420003 // addi r2, r2, 0x3
20200000 // addi r0, r1, 0x0
6c000000 // push
20400000 // loop : addi r0, r2, 0x0
6c000000 // push
20430000 // addi r3, r2, 0x0
00221022 // sub r2, r1, r2
20610000 // addi r1, r3, 0x0
08001004 // jmp loop
00000000 // nop
00000000 // nop

13
TESTPROGRAM/fibonacci.dat Normal file
View File

@@ -0,0 +1,13 @@
@0001000
20420001 // addi r2, r2, 0x0001;
3C000100 // lui r0, 0x0100;
AC010000 // sw r1, r0, 0x0000;
20000001 // loop: addi r0, r0, 0x0001;
AC020000 // sw r2, r0, 0x0000;
20430000 // addi r3, r2, 0x0000;
00411020 // add r2, r2, r1;
20610000 // addi r1, r3, 0x0000;
08001003 // jmp loop;

View File

@@ -0,0 +1,11 @@
@0001000
00414020 00414021 00414022 00414023 // sample data
00414024 00414025 00414026 00414027
00414028 00414029 0041402a 0041402b
0041402c 0041402d 0041402e 0041402f
@002f00a
00514020 00514021 00514022 00514023
00514024 00514025 00514026 00514027
00514028 00514029 0051402a 0051402b
0051402c 0051402d 0051402e 0051402f

52
alu.v
View File

@@ -31,7 +31,57 @@ input [`ALU_OPRN_INDEX_LIMIT:0] OPRN; // operation code
output [`DATA_INDEX_LIMIT:0] OUT; // result of the operation. output [`DATA_INDEX_LIMIT:0] OUT; // result of the operation.
output ZERO; output ZERO;
// TBD wire [31:0] res,
res_addsub, res_slt,
res_shift,
res_mul,
res_and, res_or, res_nor;
// add = xx0001
// sub = xx0010
// slt = xx1001
// ^ ^ these bits
// can use oprn[1] or oprn[3] for SnA
wire SnA;
or (SnA, OPRN[1], OPRN[3]);
RC_ADD_SUB_32 addsub(.Y(res_addsub), .CO(), .A(OP1), .B(OP2), .SnA(SnA));
buf slt [31:0] (res_slt, {31'b0,res_addsub[31]});
// shift_r = xx0100
// shift_l = xx0101
// ^ this bit
// can use oprn[0] for LnR
SHIFT32 shift(res_shift, OP1, OP2, OPRN[0]);
// mul = xx0011
MULT32 mul(.LO(res_mul), .HI(), .A(OP1), .B(OP2));
// and = xx0110
// or = xx0111
// nor = xx1000
AND32_2x1 and32(res_and, OP1, OP2);
OR32_2x1 or32(res_or, OP1, OP2);
NOR32_2x1 nor32(res_nor, OP1, OP2);
MUX32_16x1 out(.Y(res), .S(OPRN[3:0]), .I0(),
.I1(res_addsub), .I2(res_addsub), .I3(res_mul),
.I4(res_shift),.I5(res_shift),
.I6(res_and), .I7(res_or), .I8(res_nor),
.I9(res_slt),
.I10(), .I11(), .I12(), .I13(), .I14(), .I15()
);
// or bits of result for zero flag
wire nzf [31:0];
buf (nzf[0], res[0]);
genvar i;
generate
for (i = 1; i < 32; i = i + 1) begin : zf_gen
or (nzf[i], nzf[i-1], res[i]);
end
endgenerate
not (ZERO, nzf[31]);
buf res_out [31:0] (OUT, res);
endmodule endmodule

View File

@@ -27,7 +27,314 @@ output READ, WRITE;
input ZERO, CLK, RST; input ZERO, CLK, RST;
input [`DATA_INDEX_LIMIT:0] INSTRUCTION; input [`DATA_INDEX_LIMIT:0] INSTRUCTION;
task print_instruction;
input [`DATA_INDEX_LIMIT:0] inst;
reg [5:0] opcode2;
reg [4:0] rs2;
reg [4:0] rt2;
reg [4:0] rd2;
reg [4:0] shamt2;
reg [5:0] funct2;
reg [15:0] immediate2;
reg [25:0] address2;
begin
// parse the instruction
// R-type
{opcode2, rs2, rt2, rd2, shamt2, funct2} = inst;
// I-type
{opcode2, rs2, rt2, immediate2 } = inst;
// J-type
{opcode2, address2} = inst;
$write("@ %6dns -> [0X%08h] ", $time, inst);
case(opcode2)
// R-Type
6'h00 : begin
case(funct2)
6'h20: $write("add r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2);
6'h22: $write("sub r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2);
6'h2c: $write("mul r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2);
6'h24: $write("and r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2);
6'h25: $write("or r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2);
6'h27: $write("nor r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2);
6'h2a: $write("slt r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2);
6'h01: $write("sll r[%02d], r[%02d], %2d;", rd2, rs2, shamt2);
6'h02: $write("srl r[%02d], 0X%02h, r[%02d];", rd2, rs2, shamt2);
6'h08: $write("jr r[%02d];", rs2);
default: begin $write("");
end
endcase
end
// I-type
6'h08 : $write("addi r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2);
6'h1d : $write("muli r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2);
6'h0c : $write("andi r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2);
6'h0d : $write("ori r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2);
6'h0f : $write("lui r[%02d], 0X%04h;", rt2, immediate2);
6'h0a : $write("slti r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2);
6'h04 : $write("beq r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2);
6'h05 : $write("bne r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2);
6'h23 : $write("lw r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2);
6'h2b : $write("sw r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2);
// J-Type
6'h02 : $write("jmp 0X%07h;", address2);
6'h03 : $write("jal 0X%07h;", address2);
6'h1b : $write("push;");
6'h1c : $write("pop;");
default: $write("");
endcase
$write("\n");
end
endtask
//------------------------------------- END ---------------------------------------//
reg read, write;
assign READ = read;
assign WRITE = write;
// Control signals, same as in data_path.v
reg pc_load, pc_sel_1, pc_sel_2, pc_sel_3,
ir_load, reg_r, reg_w,
r1_sel_1, wa_sel_1, wa_sel_2, wa_sel_3,
sp_load, op1_sel_1,
op2_sel_1, op2_sel_2, op2_sel_3, op2_sel_4,
wd_sel_1, wd_sel_2, wd_sel_3,
ma_sel_1, ma_sel_2,
md_sel_1;
reg [5:0] alu_oprn;
buf (CTRL[0], pc_load);
buf (CTRL[1], pc_sel_1);
buf (CTRL[2], pc_sel_2);
buf (CTRL[3], pc_sel_3);
buf (CTRL[4], ir_load);
buf (CTRL[5], reg_r);
buf (CTRL[6], reg_w);
buf (CTRL[7], r1_sel_1);
buf (CTRL[8], wa_sel_1);
buf (CTRL[9], wa_sel_2);
buf (CTRL[10], wa_sel_3);
buf (CTRL[11], sp_load);
buf (CTRL[12], op1_sel_1);
buf (CTRL[13], op2_sel_1);
buf (CTRL[14], op2_sel_2);
buf (CTRL[15], op2_sel_3);
buf (CTRL[16], op2_sel_4);
buf (CTRL[17], wd_sel_1);
buf (CTRL[18], wd_sel_2);
buf (CTRL[19], wd_sel_3);
buf (CTRL[20], ma_sel_1);
buf (CTRL[21], ma_sel_2);
buf (CTRL[22], md_sel_1);
buf alu_oprn_buf [5:0] (CTRL[28:23], alu_oprn);
// Parse the instruction data, same as in data_path.v
wire [5:0] opcode;
wire [4:0] rs;
wire [4:0] rt;
wire [4:0] rd;
wire [4:0] shamt;
wire [5:0] funct;
wire [15:0] imm;
wire [25:0] addr;
// common for all
buf opcode_buf [5:0] (opcode, INSTRUCTION[31:26]);
// common for R-type, I-type
buf rs_buf [4:0] (rs, INSTRUCTION[25:21]);
buf rt_buf [4:0] (rt, INSTRUCTION[20:16]);
// for R-type
buf rd_buf [4:0] (rd, INSTRUCTION[15:11]);
buf shamt_buf [4:0] (shamt, INSTRUCTION[10:6]);
buf funct_buf [5:0] (funct, INSTRUCTION[5:0]);
// for I-type
buf imm_buf [15:0] (imm, INSTRUCTION[15:0]);
// for J-type
buf addr_buf [25:0] (addr, INSTRUCTION[25:0]);
// State machine
wire [2:0] state;
PROC_SM proc_sm(state, CLK, RST);
// TBD - take action on each +ve edge of clock // TBD - take action on each +ve edge of clock
always @ (state) begin
// Print current state
$write("@ %6dns -> ", $time);
$write("STATE ", state, ": ");
case (state)
`PROC_FETCH: $write("FETCH");
`PROC_DECODE: $write("DECODE");
`PROC_EXE: $write("EXECUTE");
`PROC_MEM: $write("MEMORY");
`PROC_WB: $write("WRITE BACK");
default: $write("INVALID");
endcase
case (state)
// fetch - next instruction from memory at PC
`PROC_FETCH: begin
// loaded in previous state, set to 0
pc_load = 1'b0;
reg_r = 1'b0;
reg_w = 1'b0;
// load now
ir_load = 1'b1;
read = 1'b1;
write = 1'b0;
// selections
// ma_sel_2 - load data from mem[PC]
ma_sel_2 = 1'b1;
end
// decode - parse instruction and read values from register file
`PROC_DECODE: begin
// loaded in previous state, set to 0
ir_load = 1'b0;
sp_load = 1'b0;
read = 1'b0;
// load now
reg_r = 1'b1;
reg_w = 1'b0;
// selections
// r1_sel_1: push - store value of r0 at stack pointer
r1_sel_1 = opcode != 6'h1b ? 1'b0 : 1'b1;
// wa_sel_1: R-type - write to rd, I-type - write to rt
wa_sel_1 = opcode == 6'h00 ? 1'b0 : 1'b1;
// wa_sel_2: jal - write to r31, pop - write to r0
wa_sel_2 = opcode == 6'h03 ? 1'b1 : 1'b0;
// wa_sel_3: push or pop - wa_sel_2, else wa_sel_1
wa_sel_3 = opcode == 6'h03 || opcode == 6'h1c ? 1'b0 : 1'b1;
// jr - jump to address in register
pc_sel_1 = opcode == 6'h00 && funct == 6'h08 ? 1'b0 : 1'b1;
// beq, bne - branch if equal or not equal
// TODO: this should only be selected if the condition is met
// pc_sel_2 = opcode == 6'h04 || opcode == 6'h05 ? 1'b1 : 1'b0;
// jmp, jal - jump to address
pc_sel_3 = opcode == 6'h02 || opcode == 6'h03 ? 1'b0 : 1'b1;
// alu_oprn - operation to be performed by ALU
// R-type
if (opcode == 6'h00) begin
case (funct)
6'h20: alu_oprn = 6'h01; // add
6'h22: alu_oprn = 6'h02; // sub
6'h2c: alu_oprn = 6'h03; // mul
6'h02: alu_oprn = 6'h04; // srl
6'h01: alu_oprn = 6'h05; // sll
6'h24: alu_oprn = 6'h06; // and
6'h25: alu_oprn = 6'h07; // or
6'h27: alu_oprn = 6'h08; // nor
6'h2a: alu_oprn = 6'h09; // slt
default: alu_oprn = 6'hxx;
endcase
end
// I-type and J-type
else begin
case (opcode)
// I-type
6'h08: alu_oprn = 6'h01; // addi
6'h1d: alu_oprn = 6'h03; // muli
6'h0c: alu_oprn = 6'h06; // andi
6'h0d: alu_oprn = 6'h07; // ori
6'h0a: alu_oprn = 6'h09; // slti
6'h04: alu_oprn = 6'h02; // beq - sub
6'h05: alu_oprn = 6'h02; // bne - sub
6'h23: alu_oprn = 6'h01; // lw - add
6'h2b: alu_oprn = 6'h01; // sw - add
// J-type
6'h1b: alu_oprn = 6'h02; // push - sub
6'h1c: alu_oprn = 6'h01; // pop - add
default: alu_oprn = 6'hxx;
endcase
end
// op1_sel_1 - select r1 or sp based on opcode
// push or pop - sp, else r1
op1_sel_1 = opcode == 6'h1b || opcode == 6'h1c ? 1'b1 : 1'b0;
// op2_sel_1 - select 1 or shamt based on alu_oprn
// sll or srl - shamt, else 1 (for increments/decrements)
op2_sel_1 = alu_oprn == 6'h04 || alu_oprn == 6'h05 ? 1'b1 : 1'b0;
// op2_sel_2 - select imm_zx or imm_sx based on alu_oprn
// logical (and, or) - imm_zx, else imm_sx; ('nor' not availble in I-type)
op2_sel_2 = alu_oprn == 6'h06 || alu_oprn == 6'h07 ? 1'b0 : 1'b1;
// op2_sel_3 - select op2_sel_2 or op2_sel_1 based on alu_oprn
// R-type - op2_sel_1, I-type - op2_sel_2
op2_sel_3 = opcode == 6'h00 ? 1'b1 : 1'b0;
// op2_sel_4 - select op2_sel_3 or r2
// I-type or shift or inc/dec - op2_sel_3, else r2
// i.e. r2 only if R-type and not shift
op2_sel_4 = opcode != 6'h00 || alu_oprn == 6'h04 || alu_oprn == 6'h05 ? 1'b0 : 1'b1;
end
// execute - perform operation based on instruction
`PROC_EXE: begin
// selections
// wd_sel_1 - alu_out or DATA_IN
wd_sel_1 = 1'b0;
// wd_sel_2 - wd_sel_1 or imm_zx_lsb
// lui - imm_zx_lsb, else wd_sel_1
wd_sel_2 = opcode == 6'h0f ? 1'b1 : 1'b0;
// wd_sel_3 - pc_inc or wd_sel_2
// jal - pc_inc, else wd_sel_2
wd_sel_3 = opcode == 6'h03 ? 1'b0 : 1'b1;
// md_sel_1 - r1 for push, r2 for sw
md_sel_1 = opcode == 6'h1b ? 1'b1 : 1'b0;
end
`PROC_MEM: begin
// load now
// push or sw - write to memory
if (opcode == 6'h1b || opcode == 6'h2b) begin
read = 1'b0;
write = 1'b1;
end
else begin
read = 1'b1;
write = 1'b0;
end
end
`PROC_WB: begin
// loaded in previous state, set to 0
read = 1'b0;
write = 1'b0;
// load now
pc_load = 1'b1;
// write to register file if
// R-type (except jr) or I-type (except beq, bne, sw) or pop or jal
reg_w = (opcode == 6'h00 && funct != 6'h08) // R-type (except jr)
|| (opcode == 6'h08 || opcode == 6'h1d || opcode == 6'h0c || opcode == 6'h0d
|| opcode == 6'h0f || opcode == 6'h0a || opcode == 6'h23) // I-type (except beq, bne, sw)
|| (opcode == 6'h1c || opcode == 6'h03) // pop or jal
? 1'b1 : 1'b0;
// selections
// ma_sel_2 - load data from mem[PC]
ma_sel_2 = 1'b1;
// pc_sel_2 - branch if equal or not equal
pc_sel_2 = (opcode == 6'h04 && ZERO) || (opcode == 6'h05 && ~ZERO) ? 1'b1 : 1'b0;
end
default: begin
$write("@ %6dns -> ", $time);
$write("STATE ", state, ": ");
$write("INVALID");
print_instruction(INSTRUCTION);
end
endcase
// TBD - assign control signals based on instruction
print_instruction(INSTRUCTION);
// TBD - assign READ and WRITE signals based on instruction
end
endmodule endmodule
@@ -56,6 +363,25 @@ input CLK, RST;
// list of outputs // list of outputs
output [2:0] STATE; output [2:0] STATE;
reg [2:0] state_sel = 3'bxxx;
always @ (negedge RST) begin
// set to invalid value, so that it defaults to fetch
state_sel = 3'bxxx;
end
// TBD - take action on each +ve edge of clock // TBD - take action on each +ve edge of clock
always @ (posedge CLK) begin
case (state_sel)
`PROC_FETCH: state_sel = `PROC_DECODE;
`PROC_DECODE: state_sel = `PROC_EXE;
`PROC_EXE: state_sel = `PROC_MEM;
`PROC_MEM: state_sel = `PROC_WB;
`PROC_WB: state_sel = `PROC_FETCH;
default: state_sel = `PROC_FETCH;
endcase
end
assign STATE = state_sel;
endmodule endmodule

View File

@@ -29,6 +29,149 @@ input [`CTRL_WIDTH_INDEX_LIMIT:0] CTRL;
input CLK, RST; input CLK, RST;
input [`DATA_INDEX_LIMIT:0] DATA_IN; input [`DATA_INDEX_LIMIT:0] DATA_IN;
// TBD wire pc_load, pc_sel_1, pc_sel_2, pc_sel_3,
ir_load, reg_r, reg_w,
r1_sel_1, wa_sel_1, wa_sel_2, wa_sel_3,
sp_load, op1_sel_1,
op2_sel_1, op2_sel_2, op2_sel_3, op2_sel_4,
wd_sel_1, wd_sel_2, wd_sel_3,
ma_sel_1, ma_sel_2,
md_sel_1;
wire [5:0] alu_oprn;
buf (pc_load, CTRL[0]);
buf (pc_sel_1, CTRL[1]);
buf (pc_sel_2, CTRL[2]);
buf (pc_sel_3, CTRL[3]);
buf (ir_load, CTRL[4]);
buf (reg_r, CTRL[5]);
buf (reg_w, CTRL[6]);
buf (r1_sel_1, CTRL[7]);
buf (wa_sel_1, CTRL[8]);
buf (wa_sel_2, CTRL[9]);
buf (wa_sel_3, CTRL[10]);
buf (sp_load, CTRL[11]);
buf (op1_sel_1, CTRL[12]);
buf (op2_sel_1, CTRL[13]);
buf (op2_sel_2, CTRL[14]);
buf (op2_sel_3, CTRL[15]);
buf (op2_sel_4, CTRL[16]);
buf (wd_sel_1, CTRL[17]);
buf (wd_sel_2, CTRL[18]);
buf (wd_sel_3, CTRL[19]);
buf (ma_sel_1, CTRL[20]);
buf (ma_sel_2, CTRL[21]);
buf (md_sel_1, CTRL[22]);
buf alu_oprn_buf [5:0] (alu_oprn, CTRL[28:23]);
// variables
wire [31:0] ir; // Instruction Register
wire [31:0] r1, r2; // Register File
wire [31:0] pc, pc_inc; // Program Counter
wire [31:0] sp; // Stack Pointer
wire [31:0] alu_out; // ALU output
// TODO: Why?
buf ir_buf [31:0] (INSTRUCTION, ir);
// Parse the instruction data
wire [5:0] opcode;
wire [4:0] rs;
wire [4:0] rt;
wire [4:0] rd;
wire [4:0] shamt;
wire [5:0] funct;
wire [15:0] imm;
wire [25:0] addr;
// common for all
buf opcode_buf [5:0] (opcode, ir[31:26]);
// common for R-type, I-type
buf rs_buf [4:0] (rs, ir[25:21]);
buf rt_buf [4:0] (rt, ir[20:16]);
// for R-type
buf rd_buf [4:0] (rd, ir[15:11]);
buf shamt_buf [4:0] (shamt, ir[10:6]);
buf funct_buf [5:0] (funct, ir[5:0]);
// for I-type
buf imm_buf [15:0] (imm, ir[15:0]);
// for J-type
buf addr_buf [25:0] (addr, ir[25:0]);
// Instruction Register input
// Instruction Register
REG32 ir_inst(.Q(ir), .D(DATA_IN), .LOAD(ir_load), .CLK(CLK), .RESET(RST));
// Register File Input
wire [31:0] r1_sel, wa_sel, wd_sel;
wire [31:0] wa_sel_p1, wa_sel_p2, wd_sel_p1, wd_sel_p2;
wire [31:0] imm_zx_lsb;
buf imm_zx_lsb_buf [31:0] (imm_zx_lsb, {imm, 16'b0});
MUX32_2x1 mux_r1_sel(r1_sel, {27'b0,rs}, 32'b0, r1_sel_1);
MUX32_2x1 mux_wa_sel_p1(wa_sel_p1, {27'b0,rd}, {27'b0,rt}, wa_sel_1);
// TODO: Why 31?
MUX32_2x1 mux_wa_sel_p2(wa_sel_p2, 32'b0, 31, wa_sel_2);
MUX32_2x1 mux_wa_sel(wa_sel, wa_sel_p2, wa_sel_p1, wa_sel_3);
MUX32_2x1 mux_wd_sel_p1(wd_sel_p1, alu_out,DATA_IN, wd_sel_1);
MUX32_2x1 mux_wd_sel_p2(wd_sel_p2, wd_sel_p1, imm_zx_lsb, wd_sel_2);
MUX32_2x1 mux_wd_sel(wd_sel, pc_inc, wd_sel_p2, wd_sel_3);
// Register File
REGISTER_FILE_32x32 rf_inst(.DATA_R1(r1), .DATA_R2(r2), .ADDR_R1(r1_sel[4:0]), .ADDR_R2(rt),
.DATA_W(wd_sel), .ADDR_W(wa_sel[4:0]), .READ(reg_r), .WRITE(reg_w), .CLK(CLK), .RST(RST));
// ALU Input
wire [31:0] op1_sel, op2_sel;
wire [31:0] op2_sel_p1, op2_sel_p2, op2_sel_p3;
wire [31:0] shamt_zx, imm_sx, imm_zx;
buf shamt_zx_buf [31:0] (shamt_zx, {27'b0, shamt});
buf imm_sx_buf [31:0] (imm_sx, {{16{imm[15]}}, imm});
buf imm_zx_buf [31:0] (imm_zx, {16'b0, imm});
MUX32_2x1 mux_op1_sel(op1_sel, r1, sp, op1_sel_1);
MUX32_2x1 mux_op2_sel_p1(op2_sel_p1, 32'b1, shamt_zx, op2_sel_1);
MUX32_2x1 mux_op2_sel_p2(op2_sel_p2, imm_zx, imm_sx, op2_sel_2);
MUX32_2x1 mux_op2_sel_p3(op2_sel_p3, op2_sel_p2, op2_sel_p1, op2_sel_3);
MUX32_2x1 mux_op2_sel(op2_sel, op2_sel_p3, r2, op2_sel_4);
// ALU
ALU alu_inst(.OUT(alu_out), .ZERO(ZERO), .OP1(op1_sel), .OP2(op2_sel), .OPRN(alu_oprn));
// Progam Counter Input
wire [31:0] pc_sel;
wire [31:0] pc_offset, pc_jump, pc_sel_p1, pc_sel_p2;
RC_ADD_SUB_32 pc_inc_inst(.Y(pc_inc), .CO(), .A(pc), .B(32'b1), .SnA(1'b0));
MUX32_2x1 mux_pc_sel_p1(pc_sel_p1, r1, pc_inc, pc_sel_1);
RC_ADD_SUB_32 pc_sel_2_inst(.Y(pc_offset), .CO(), .A(pc), .B(imm_sx), .SnA(1'b0));
MUX32_2x1 mux_pc_sel_p2(pc_sel_p2, pc_sel_p1, pc_offset, pc_sel_2);
buf pc_jump_buf [31:0] (pc_jump, {6'b0, addr});
MUX32_2x1 mux_pc_sel(pc_sel, pc_jump, pc_sel_p2, pc_sel_3);
// Program Counter
defparam pc_inst.PATTERN = `INST_START_ADDR;
REG32_PP pc_inst(.Q(pc), .D(pc_sel), .LOAD(pc_load), .CLK(CLK), .RESET(RST));
// Stack Pointer
defparam sp_inst.PATTERN = `INIT_STACK_POINTER;
REG32_PP sp_inst(.Q(sp), .D(alu_out), .LOAD(sp_load), .CLK(CLK), .RESET(RST));
// Data out
MUX32_2x1 mux_data_out(DATA_OUT, r2, r1, md_sel_1);
// Address out
wire [31:0] ma_sel_p1;
MUX32_2x1 mux_ma_sel_p1(ma_sel_p1, alu_out, sp, ma_sel_1);
// TODO: Check address calculation since it's 26 bit
(* keep="soft" *)
wire [5:0] _addr_ignored;
MUX32_2x1 mux_ma_sel({_addr_ignored,ADDR}, ma_sel_p1, pc, ma_sel_2);
endmodule endmodule

108
logic.v
View File

@@ -20,7 +20,7 @@ output [63:0] Y;
//input list //input list
input [63:0] A; input [63:0] A;
RC_ADD_SUB_64 twoscomp64_sub(.Y(Y), .A(64'b0), .B(A), .SnA(1'b1)); RC_ADD_SUB_64 twoscomp64_sub(.Y(Y), .CO(), .A(64'b0), .B(A), .SnA(1'b1));
endmodule endmodule
@@ -31,7 +31,31 @@ output [31:0] Y;
//input list //input list
input [31:0] A; input [31:0] A;
RC_ADD_SUB_32 twoscomp32_sub(.Y(Y), .A(0), .B(A), .SnA(1'b1)); RC_ADD_SUB_32 twoscomp32_sub(.Y(Y), .CO(), .A(0), .B(A), .SnA(1'b1));
endmodule
// 32-bit register with parameterized preset pattern
module REG32_PP(Q, D, LOAD, CLK, RESET);
parameter PATTERN = 32'h00000000;
output [31:0] Q;
input CLK, LOAD;
input [31:0] D;
input RESET;
wire [31:0] qbar;
genvar i;
generate
for(i=0; i<32; i=i+1)
begin : reg32_gen_loop
if (PATTERN[i] == 0)
REG1 reg_inst(.Q(Q[i]), .Qbar(qbar[i]), .D(D[i]), .L(LOAD), .C(CLK), .nP(1'b1), .nR(RESET));
else
REG1 reg_inst(.Q(Q[i]), .Qbar(qbar[i]), .D(D[i]), .L(LOAD), .C(CLK), .nP(RESET), .nR(1'b1));
end
endgenerate
endmodule endmodule
@@ -43,7 +67,12 @@ input CLK, LOAD;
input [31:0] D; input [31:0] D;
input RESET; input RESET;
// TBD genvar i;
generate
for (i = 0; i < 32; i = i + 1) begin : reg_gen
REG1 r(Q[i], _, D[i], LOAD, CLK, 1'b1, RESET);
end
endgenerate
endmodule endmodule
@@ -56,7 +85,10 @@ input D, C, L;
input nP, nR; input nP, nR;
output Q,Qbar; output Q,Qbar;
// TBD wire D_out;
MUX1_2x1 data(D_out, Q, D, L);
D_FF dff(Q, Qbar, D_out, C, nP, nR);
endmodule endmodule
@@ -69,7 +101,11 @@ input D, C;
input nP, nR; input nP, nR;
output Q,Qbar; output Q,Qbar;
// TBD wire Cbar, Y, Ybar;
not C_inv(Cbar, C);
D_LATCH dlatch(Y, Ybar, D, Cbar, nP, nR);
SR_LATCH srlatch(Q, Qbar, Y, Ybar, C, nP, nR);
endmodule endmodule
@@ -82,7 +118,10 @@ input D, C;
input nP, nR; input nP, nR;
output Q,Qbar; output Q,Qbar;
// TBD wire Dbar;
not D_inv(Dbar, D);
SR_LATCH latch(Q, Qbar, D, Dbar, C, nP, nR);
endmodule endmodule
@@ -95,7 +134,13 @@ input S, R, C;
input nP, nR; input nP, nR;
output Q,Qbar; output Q,Qbar;
// TBD wire r1, r2;
nand n1(r1, C, S);
nand n2(r2, C, R);
nand n3(Q, nP, r1, Qbar);
nand n4(Qbar, nR, r2, Q);
endmodule endmodule
@@ -106,7 +151,19 @@ output [31:0] D;
// input // input
input [4:0] I; input [4:0] I;
// TBD wire [15:0] half;
wire I_not;
not I_inv(I_not, I[4]);
DECODER_4x16 d(half, I[3:0]);
genvar i;
generate
for (i = 0; i < 16; i = i + 1) begin : d5_gen
and msb0(D[i], I_not, half[i]);
and msb1(D[i + 16], I[4], half[i]);
end
endgenerate
endmodule endmodule
@@ -117,7 +174,19 @@ output [15:0] D;
// input // input
input [3:0] I; input [3:0] I;
// TBD wire [7:0] half;
wire I_not;
not I_inv(I_not, I[3]);
DECODER_3x8 d(half, I[2:0]);
genvar i;
generate
for (i = 0; i < 8; i = i + 1) begin : d4_gen
and msb0(D[i], I_not, half[i]);
and msb1(D[i + 8], I[3], half[i]);
end
endgenerate
endmodule endmodule
@@ -129,8 +198,19 @@ output [7:0] D;
// input // input
input [2:0] I; input [2:0] I;
//TBD wire [3:0] half;
wire I_not;
not I_inv(I_not, I[2]);
DECODER_2x4 d(half, I[1:0]);
genvar i;
generate
for (i = 0; i < 4; i = i + 1) begin : d3_gen
and msb0(D[i], I_not, half[i]);
and msb1(D[i + 4], I[2], half[i]);
end
endgenerate
endmodule endmodule
@@ -141,6 +221,12 @@ output [3:0] D;
// input // input
input [1:0] I; input [1:0] I;
// TBD wire I_not [1:0];
not I_inv[1:0] (I_not, I);
and (D[0], I_not[1], I_not[0]);
and (D[1], I_not[1], I[0]);
and (D[2], I[1], I_not[0]);
and (D[3], I[1], I[0]);
endmodule endmodule

38
mux.v
View File

@@ -27,7 +27,16 @@ input [31:0] I16, I17, I18, I19, I20, I21, I22, I23;
input [31:0] I24, I25, I26, I27, I28, I29, I30, I31; input [31:0] I24, I25, I26, I27, I28, I29, I30, I31;
input [4:0] S; input [4:0] S;
// TBD wire [31:0] x0, x1;
MUX32_16x1 mux16_0(x0, I0, I1, I2, I3, I4, I5, I6, I7,
I8, I9, I10, I11, I12, I13, I14, I15,
S[3:0]
);
MUX32_16x1 mux16_1(x1, I16, I17, I18, I19, I20, I21, I22, I23,
I24, I25, I26, I27, I28, I29, I30, I31,
S[3:0]
);
MUX32_2x1 out(Y, x0, x1, S[4]);
endmodule endmodule
@@ -55,7 +64,11 @@ input [31:0] I14;
input [31:0] I15; input [31:0] I15;
input [3:0] S; input [3:0] S;
// TBD
wire [31:0] x0, x1;
MUX32_8x1 mux8_0(x0, I0, I1, I2, I3, I4, I5, I6, I7, S[2:0]);
MUX32_8x1 mux8_1(x1, I8, I9, I10, I11, I12, I13, I14, I15, S[2:0]);
MUX32_2x1 out(Y, x0, x1, S[3]);
endmodule endmodule
@@ -74,7 +87,10 @@ input [31:0] I6;
input [31:0] I7; input [31:0] I7;
input [2:0] S; input [2:0] S;
// TBD wire [31:0] x0, x1;
MUX32_4x1 mux4_0(x0, I0, I1, I2, I3, S[1:0]);
MUX32_4x1 mux4_1(x1, I4, I5, I6, I7, S[1:0]);
MUX32_2x1 out(Y, x0, x1, S[2]);
endmodule endmodule
@@ -89,7 +105,10 @@ input [31:0] I2;
input [31:0] I3; input [31:0] I3;
input [1:0] S; input [1:0] S;
// TBD wire [31:0] x0, x1;
MUX32_2x1 mux2_0(x0, I0, I1, S[0]);
MUX32_2x1 mux2_1(x1, I2, I3, S[0]);
MUX32_2x1 out(Y, x0, x1, S[1]);
endmodule endmodule
@@ -103,17 +122,19 @@ input [31:0] I1;
input S; input S;
// only need 1 not gate // only need 1 not gate
wire S_not;
not (S_not, S); not (S_not, S);
wire [31:0] x0, x1; // wire [31:0] x0, x1;
genvar i; genvar i;
generate generate
for (i = 0; i < 32; i = i + 1) for (i = 0; i < 32; i = i + 1)
begin : mux32_gen_loop begin : mux32_gen_loop
and (x0[i], S_not, I0[i]); wire x0, x1;
and (x1[i], S, I1[i]); and (x0, S_not, I0[i]);
or (Y[i], x0[i], x1[i]); and (x1, S, I1[i]);
or (Y[i], x0, x1);
end end
endgenerate endgenerate
@@ -126,6 +147,7 @@ output Y;
//input list //input list
input I0, I1, S; input I0, I1, S;
wire S_not, x0, x1;
not (S_not, S); not (S_not, S);
and (x0, S_not, I0); and (x0, S_not, I0);
and (x1, S, I1); and (x1, S, I1);

View File

@@ -41,6 +41,30 @@ input [`REG_ADDR_INDEX_LIMIT:0] ADDR_R1, ADDR_R2, ADDR_W;
output [`DATA_INDEX_LIMIT:0] DATA_R1; output [`DATA_INDEX_LIMIT:0] DATA_R1;
output [`DATA_INDEX_LIMIT:0] DATA_R2; output [`DATA_INDEX_LIMIT:0] DATA_R2;
// TBD wire [31:0] Q [31:0];
wire [31:0] r_write_sel, r_write;
DECODER_5x32 d_write(r_write_sel, ADDR_W);
// only write when WRITE=1
and write_active [31:0] (r_write, r_write_sel, WRITE);
REG32 r[31:0] (Q, DATA_W, r_write, CLK, RST);
wire [31:0] r1, r2;
MUX32_32x1 mux_r1(r1, Q[0], Q[1], Q[2], Q[3], Q[4], Q[5], Q[6], Q[7],
Q[8], Q[9], Q[10], Q[11], Q[12], Q[13], Q[14], Q[15],
Q[16], Q[17], Q[18], Q[19], Q[20], Q[21], Q[22], Q[23],
Q[24], Q[25], Q[26], Q[27], Q[28], Q[29], Q[30], Q[31],
ADDR_R1
);
MUX32_32x1 mux_r2(r2, Q[0], Q[1], Q[2], Q[3], Q[4], Q[5], Q[6], Q[7],
Q[8], Q[9], Q[10], Q[11], Q[12], Q[13], Q[14], Q[15],
Q[16], Q[17], Q[18], Q[19], Q[20], Q[21], Q[22], Q[23],
Q[24], Q[25], Q[26], Q[27], Q[28], Q[29], Q[30], Q[31],
ADDR_R2
);
MUX32_2x1 mux_out1(DATA_R1, {32{1'bZ}}, r1, READ);
MUX32_2x1 mux_out2(DATA_R2, {32{1'bZ}}, r2, READ);
endmodule endmodule