2 Commits

Author SHA1 Message Date
3801d523de implement a Verilog gate level model for ripple carry adder subtractor
Gate level implementation for the following components:
- FULL_ADDER
- HALF_ADDER
- RC_ADD_SUB_32
2024-10-01 20:42:02 -07:00
d1475b5a4f implement a Verilog gate level model for ripple carry adder subtractor
Gate level implementation for the following components:
- FULL_ADDER
- HALF_ADDER
- RC_ADD_SUB_32
2024-10-01 11:01:17 -07:00
9 changed files with 23 additions and 226 deletions

View File

@@ -18,7 +18,7 @@ reg LnR;
wire [31:0] Y;
integer reg_idx;
reg [`DATA_INDEX_LIMIT:0] result[0:123];
reg [`DATA_INDEX_LIMIT:0] result[0:63];
integer i, e;
integer no_of_test=0;
@@ -33,7 +33,7 @@ D=32'ha5a5a5a5;
S=32'h00000000;
LnR=1'b1; // left shift
for(i=1; i<63; i=i+1)
for(i=1; i<33; i=i+1)
begin
#5
no_of_test = no_of_test + 1;
@@ -51,7 +51,7 @@ end
#5 LnR=1'b0; // right shift
for(i=1; i<63; i=i+1)
for(i=1; i<33; i=i+1)
begin
#5
no_of_test = no_of_test + 1;

View File

@@ -36,8 +36,6 @@ A=10; B=20; // Y = 10 * 20 = 200
#1 result[i] = {HI,LO}; i=i+1;
#1 A=10; B=19; // Y = 10 * 19 = 190
#1 result[i] = {HI,LO}; i=i+1;
#1 A=32'h00d96027; B=32'h7c32b43c; // Y = 0x0d96027 * 0x7c32b43c = 0x 006975a0 b62bf524
#1 result[i] = {HI,LO}; i=i+1;
#1 A=32'h70000000; B=32'h70000000;
#1 result[i] = {HI,LO}; i=i+1;
#1

46
alu.v
View File

@@ -31,51 +31,7 @@ input [`ALU_OPRN_INDEX_LIMIT:0] OPRN; // operation code
output [`DATA_INDEX_LIMIT:0] OUT; // result of the operation.
output ZERO;
wire [31:0] //res,
res_addsub, res_slt,
res_shift,
res_mul,
res_and, res_or, res_nor;
wire [31:0] res;
// TBD
// add = xx0001
// sub = xx0010
// slt = xx1001
// ^ ^ these bits
// can use oprn[1] or oprn[3] for SnA
wire SnA;
or (SnA, OPRN[1], OPRN[3]);
RC_ADD_SUB_32 addsub(.Y(res_addsub), .A(OP1), .B(OP2), .SnA(SnA));
buf slt [31:0] (res_slt, {31'b0,res_addsub[31]});
// shift_r = xx0100
// shift_l = xx0101
// ^ this bit
// can use oprn[0] for LnR
SHIFT32 shift(res_shift, OP1, OP2, OPRN[0]);
// mul = xx0011
MULT32 mul(.LO(res_mul), .A(OP1), .B(OP2));
// and = xx0110
// or = xx0111
// nor = xx1000
AND32_2x1 and32(res_and, OP1, OP2);
OR32_2x1 or32(res_or, OP1, OP2);
NOR32_2x1 nor32(res_nor, OP1, OP2);
MUX32_16x1 out(.Y(res), .S(OPRN[3:0]),
.I1(res_addsub), .I2(res_addsub), .I3(res_mul),
.I4(res_shift),.I5(res_shift),
.I6(res_and), .I7(res_or), .I8(res_nor),
.I9(res_slt)
);
// or bits of result for zero flag
wire nzf;
or (nzf, res[24:0]);
not (ZERO, nzf);
buf res_out [31:0] (OUT, res);
endmodule

View File

@@ -21,15 +21,7 @@ input [31:0] D;
input [31:0] S;
input LnR;
// check if upper bits are nonzero
wire oob;
or (oob, S[31:5]);
wire [31:0] shifted;
BARREL_SHIFTER32 shifter(shifted, D, S[4:0], LnR);
// return 0 if S >= 32
MUX32_2x1 mux_oob(Y, shifted, 32'b0, oob);
// TBD
endmodule
@@ -42,11 +34,7 @@ input [31:0] D;
input [4:0] S;
input LnR;
wire [31:0] shifters [1:0];
SHIFT32_R shifter_r(shifters[0], D, S);
SHIFT32_L shifter_l(shifters[1], D, S);
MUX32_2x1 mux_lnr(Y, shifters[0], shifters[1], LnR);
// TBD
endmodule
@@ -58,22 +46,7 @@ output [31:0] Y;
input [31:0] D;
input [4:0] S;
wire [31:0] stages [5:0];
buf stage0[31:0] (stages[0], D);
genvar i, j;
generate
for (i = 0; i < 5; i = i + 1) begin : shift_stage_gen
for (j = 0; j < 32; j = j + 1) begin : stage_mux_gen
if (j < 32 - (2 ** i))
MUX1_2x1 mux_stage(stages[i+1][j], stages[i][j], stages[i][j + (2 ** i)], S[i]);
else
MUX1_2x1 mux_stage(stages[i+1][j], stages[i][j], 1'b0, S[i]);
end
end
endgenerate
buf out[31:0] (Y, stages[5]);
// TBD
endmodule
@@ -85,22 +58,7 @@ output [31:0] Y;
input [31:0] D;
input [4:0] S;
wire [31:0] stages [5:0];
buf stage0[31:0] (stages[0], D);
genvar i, j;
generate
for (i = 0; i < 5; i = i + 1) begin : shift_stage_gen
for (j = 0; j < 32; j = j + 1) begin : stage_mux_gen
if (j >= (2 ** i))
MUX1_2x1 mux_stage(stages[i+1][j], stages[i][j], stages[i][j - (2 ** i)], S[i]);
else
MUX1_2x1 mux_stage(stages[i+1][j], stages[i][j], 1'b0, S[i]);
end
end
endgenerate
buf out[31:0] (Y, stages[5]);
// TBD
endmodule

12
logic.v
View File

@@ -20,7 +20,7 @@ output [63:0] Y;
//input list
input [63:0] A;
RC_ADD_SUB_64 twoscomp64_sub(.Y(Y), .A(64'b0), .B(A), .SnA(1'b1));
// TBD
endmodule
@@ -31,7 +31,7 @@ output [31:0] Y;
//input list
input [31:0] A;
RC_ADD_SUB_32 twoscomp32_sub(.Y(Y), .A(0), .B(A), .SnA(1'b1));
// TBD
endmodule
@@ -141,12 +141,6 @@ output [3:0] D;
// input
input [1:0] I;
wire I_not [1:0];
not I_inv[1:0] (I_not, I);
and (D[0], I_not[1], I_not[0]);
and (D[1], I_not[1], I[0]);
and (D[2], I[1], I_not[0]);
and (D[3], I[1], I[0]);
// TBD
endmodule

View File

@@ -80,19 +80,3 @@ generate
end
endgenerate
endmodule
// 32-bit buffer
module BUF32_1x1(Y,A);
//output
output [31:0] Y;
//input
input [31:0] A;
genvar i;
generate
for (i = 0; i < 32; i = i + 1)
begin : buf32_gen_loop
buf buf32_inst(Y[i], A[i]);
end
endgenerate
endmodule

53
mult.v
View File

@@ -27,25 +27,7 @@ output [31:0] LO;
input [31:0] A;
input [31:0] B;
wire [31:0] A_neg, B_neg;
TWOSCOMP32 A_twoscomp(A_neg, A);
TWOSCOMP32 B_twoscomp(B_neg, B);
wire [31:0] A_abs, B_abs;
MUX32_2x1 A_mux(A_abs, A, A_neg, A[31]);
MUX32_2x1 B_mux(B_abs, B, B_neg, B[31]);
wire [31:0] HI_abs, LO_abs;
MULT32_U mult_abs(HI_abs, LO_abs, A_abs, B_abs);
wire [31:0] HI_neg, LO_neg;
TWOSCOMP64 mult_neg({HI_neg,LO_neg}, {HI_abs,LO_abs});
wire sign;
xor (sign, A[31], B[31]);
MUX32_2x1 HI_mux(HI, HI_abs, HI_neg, sign);
MUX32_2x1 LO_mux(LO, LO_abs, LO_neg, sign);
// TBD
endmodule
@@ -57,37 +39,6 @@ output [31:0] LO;
input [31:0] A;
input [31:0] B;
// partial sums
wire [31:0] Y [31:0];
// first partial is just
AND32_2x1 partial_1(Y[0], A, {32{B[0]}});
// put lowest bit from first partial into result
buf (LO[0], Y[0][0]);
// carries from partial adders
wire CI[31:0];
// first carry is always 0
buf (CI[0], 0);
genvar i;
generate
for (i = 0; i < 31; i = i + 1)
begin : mult32u_gen_loop
// multiply A by a single digit in B
wire [31:0] A_and;
AND32_2x1 partial_and_inst(A_and, A, {32{B[i+1]}});
// calc the next partial and carry (i + 1)
RC_ADD_SUB_32 partial_add_inst(.Y(Y[i+1]), .CO(CI[i+1]), .A(A_and), .B({CI[i],Y[i][31:1]}), .SnA(1'b0));
// put lowest bit from calc into result
buf (LO[i+1], Y[i+1][0]);
end
endgenerate
// last carry and partial is HI
BUF32_1x1 buf_hi(HI, {CI[31],Y[31][31:1]});
// TBD
endmodule

39
mux.v
View File

@@ -55,11 +55,7 @@ input [31:0] I14;
input [31:0] I15;
input [3:0] S;
wire [31:0] x0, x1;
MUX32_8x1 mux8_0(x0, I0, I1, I2, I3, I4, I5, I6, I7, S[2:0]);
MUX32_8x1 mux8_1(x1, I8, I9, I10, I11, I12, I13, I14, I15, S[2:0]);
MUX32_2x1 out(Y, x0, x1, S[3]);
// TBD
endmodule
@@ -78,10 +74,7 @@ input [31:0] I6;
input [31:0] I7;
input [2:0] S;
wire [31:0] x0, x1;
MUX32_4x1 mux4_0(x0, I0, I1, I2, I3, S[1:0]);
MUX32_4x1 mux4_1(x1, I4, I5, I6, I7, S[1:0]);
MUX32_2x1 out(Y, x0, x1, S[2]);
// TBD
endmodule
@@ -96,10 +89,7 @@ input [31:0] I2;
input [31:0] I3;
input [1:0] S;
wire [31:0] x0, x1;
MUX32_2x1 mux2_0(x0, I0, I1, S[0]);
MUX32_2x1 mux2_1(x1, I2, I3, S[0]);
MUX32_2x1 out(Y, x0, x1, S[1]);
// TBD
endmodule
@@ -112,22 +102,7 @@ input [31:0] I0;
input [31:0] I1;
input S;
// only need 1 not gate
wire S_not;
not (S_not, S);
// wire [31:0] x0, x1;
genvar i;
generate
for (i = 0; i < 32; i = i + 1)
begin : mux32_gen_loop
wire x0, x1;
and (x0, S_not, I0[i]);
and (x1, S, I1[i]);
or (Y[i], x0, x1);
end
endgenerate
// TBD
endmodule
@@ -138,10 +113,6 @@ output Y;
//input list
input I0, I1, S;
wire S_not, x0, x1;
not (S_not, S);
and (x0, S_not, I0);
and (x1, S, I1);
or (Y, x0, x1);
// TBD
endmodule

View File

@@ -29,21 +29,7 @@ input [63:0] A;
input [63:0] B;
input SnA;
// carry-in bits for each 1-bit full adder
wire C[0:64];
buf (C[0], SnA);
genvar i;
generate
for (i = 0; i < 64; i = i + 1)
begin : add64_gen_loop
wire B_xor;
xor (B_xor, B[i], SnA);
FULL_ADDER add64_inst(Y[i], C[i+1], A[i], B_xor, C[i]);
end
endgenerate
buf (CO, C[64]);
// TBD
endmodule
@@ -64,12 +50,11 @@ genvar i;
generate
for (i = 0; i < 32; i = i + 1)
begin : add32_gen_loop
wire B_xor;
xor (B_xor, B[i], SnA);
FULL_ADDER add32_inst(Y[i], C[i+1], A[i], B_xor, C[i]);
FULL_ADDER add_inst(Y[i], C[i+1], A[i], B[i] ^ SnA, C[i]);
end
endgenerate
//assign CO = C[32];
buf (CO, C[32]);
endmodule