// Name: control_unit.v // Module: CONTROL_UNIT // Output: CTRL : Control signal for data path // READ : Memory read signal // WRITE : Memory Write signal // // Input: ZERO : Zero status from ALU // CLK : Clock signal // RST : Reset Signal // // Notes: - Control unit synchronize operations of a processor // Assign each bit of control signal to control one part of data path // // Revision History: // // Version Date Who email note //------------------------------------------------------------------------------------------ // 1.0 Sep 10, 2014 Kaushik Patra kpatra@sjsu.edu Initial creation //------------------------------------------------------------------------------------------ `include "prj_definition.v" module CONTROL_UNIT(CTRL, READ, WRITE, ZERO, INSTRUCTION, CLK, RST); // Output signals output [`CTRL_WIDTH_INDEX_LIMIT:0] CTRL; output READ, WRITE; // input signals input ZERO, CLK, RST; input [`DATA_INDEX_LIMIT:0] INSTRUCTION; task print_instruction; input [`DATA_INDEX_LIMIT:0] inst; reg [5:0] opcode2; reg [4:0] rs2; reg [4:0] rt2; reg [4:0] rd2; reg [4:0] shamt2; reg [5:0] funct2; reg [15:0] immediate2; reg [25:0] address2; begin // parse the instruction // R-type {opcode2, rs2, rt2, rd2, shamt2, funct2} = inst; // I-type {opcode2, rs2, rt2, immediate2 } = inst; // J-type {opcode2, address2} = inst; $write("@ %6dns -> [0X%08h] ", $time, inst); case(opcode2) // R-Type 6'h00 : begin case(funct2) 6'h20: $write("add r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h22: $write("sub r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h2c: $write("mul r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h24: $write("and r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h25: $write("or r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h27: $write("nor r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h2a: $write("slt r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h01: $write("sll r[%02d], r[%02d], %2d;", rd2, rs2, shamt2); 6'h02: $write("srl r[%02d], 0X%02h, r[%02d];", rd2, rs2, shamt2); 6'h08: $write("jr r[%02d];", rs2); default: begin $write(""); end endcase end // I-type 6'h08 : $write("addi r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h1d : $write("muli r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h0c : $write("andi r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h0d : $write("ori r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h0f : $write("lui r[%02d], 0X%04h;", rt2, immediate2); 6'h0a : $write("slti r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h04 : $write("beq r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h05 : $write("bne r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h23 : $write("lw r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h2b : $write("sw r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); // J-Type 6'h02 : $write("jmp 0X%07h;", address2); 6'h03 : $write("jal 0X%07h;", address2); 6'h1b : $write("push;"); 6'h1c : $write("pop;"); default: $write(""); endcase $write("\n"); end endtask //------------------------------------- END ---------------------------------------// reg read, write; assign READ = read; assign WRITE = write; // Control signals, same as in data_path.v reg pc_load, pc_sel_1, pc_sel_2, pc_sel_3, ir_load, reg_r, reg_w, r1_sel_1, wa_sel_1, wa_sel_2, wa_sel_3, sp_load, op1_sel_1, op2_sel_1, op2_sel_2, op2_sel_3, op2_sel_4, wd_sel_1, wd_sel_2, wd_sel_3, ma_sel_1, ma_sel_2, md_sel_1; reg [5:0] alu_oprn; buf (CTRL[0], pc_load); buf (CTRL[1], pc_sel_1); buf (CTRL[2], pc_sel_2); buf (CTRL[3], pc_sel_3); buf (CTRL[4], ir_load); buf (CTRL[5], r1_sel_1); buf (CTRL[6], reg_r); buf (CTRL[7], reg_w); buf (CTRL[8], sp_load); buf (CTRL[9], op1_sel_1); buf (CTRL[10], op2_sel_1); buf (CTRL[11], op2_sel_2); buf (CTRL[12], op2_sel_3); buf (CTRL[13], op2_sel_4); buf alu_oprn_buf [5:0] (CTRL[19:14], alu_oprn); buf (CTRL[20], ma_sel_1); buf (CTRL[21], ma_sel_2); buf (CTRL[22], md_sel_1); buf (CTRL[23], wd_sel_1); buf (CTRL[24], wd_sel_2); buf (CTRL[25], wd_sel_3); buf (CTRL[26], wa_sel_1); buf (CTRL[27], wa_sel_2); buf (CTRL[28], wa_sel_3); // Parse the instruction data, same as in data_path.v wire [5:0] opcode; wire [4:0] rs; wire [4:0] rt; wire [4:0] rd; wire [4:0] shamt; wire [5:0] funct; wire [15:0] imm; wire [25:0] addr; // common for all buf opcode_buf [5:0] (opcode, INSTRUCTION[31:26]); // common for R-type, I-type buf rs_buf [4:0] (rs, INSTRUCTION[25:21]); buf rt_buf [4:0] (rt, INSTRUCTION[20:16]); // for R-type buf rd_buf [4:0] (rd, INSTRUCTION[15:11]); buf shamt_buf [4:0] (shamt, INSTRUCTION[10:6]); buf funct_buf [5:0] (funct, INSTRUCTION[5:0]); // for I-type buf imm_buf [15:0] (imm, INSTRUCTION[15:0]); // for J-type buf addr_buf [25:0] (addr, INSTRUCTION[25:0]); // State machine wire [2:0] state; PROC_SM proc_sm(state, CLK, RST); // TBD - take action on each +ve edge of clock always @ (state) begin // Print current state $write("@ %6dns -> ", $time); $write("STATE ", state, ": "); case (state) `PROC_FETCH: $write("FETCH"); `PROC_DECODE: $write("DECODE"); `PROC_EXE: $write("EXECUTE"); `PROC_MEM: $write("MEMORY"); `PROC_WB: $write("WRITE BACK"); default: $write("INVALID"); endcase case (state) // fetch - next instruction from memory at PC `PROC_FETCH: begin // loaded in previous state, set to 0 pc_load = 1'b0; reg_r = 1'b0; reg_w = 1'b0; // load now ir_load = 1'b1; read = 1'b1; write = 1'b0; // selections // ma_sel_2 - load data from mem[PC] ma_sel_2 = 1'b1; end // decode - parse instruction and read values from register file `PROC_DECODE: begin // loaded in previous state, set to 0 ir_load = 1'b0; sp_load = 1'b0; read = 1'b0; // load now reg_r = 1'b1; reg_w = 1'b0; // selections // r1_sel_1: push - store value of r0 at stack pointer r1_sel_1 = opcode != 6'h1b ? 1'b0 : 1'b1; // wa_sel_1: R-type - write to rd, I-type - write to rt wa_sel_1 = opcode == 6'h00 ? 1'b0 : 1'b1; // wa_sel_2: jal - write to r31, pop - write to r0 wa_sel_2 = opcode == 6'h03 ? 1'b1 : 1'b0; // wa_sel_3: push or pop - wa_sel_2, else wa_sel_1 wa_sel_3 = opcode == 6'h03 || opcode == 6'h1c ? 1'b0 : 1'b1; // jr - jump to address in register pc_sel_1 = opcode == 6'h00 && funct == 6'h08 ? 1'b0 : 1'b1; // beq, bne - branch if equal or not equal // TODO: this should only be selected if the condition is met // pc_sel_2 = opcode == 6'h04 || opcode == 6'h05 ? 1'b1 : 1'b0; // jmp, jal - jump to address pc_sel_3 = opcode == 6'h02 || opcode == 6'h03 ? 1'b0 : 1'b1; // alu_oprn - operation to be performed by ALU // R-type if (opcode == 6'h00) begin case (funct) 6'h20: alu_oprn = 6'h01; // add 6'h22: alu_oprn = 6'h02; // sub 6'h2c: alu_oprn = 6'h03; // mul 6'h02: alu_oprn = 6'h04; // srl 6'h01: alu_oprn = 6'h05; // sll 6'h24: alu_oprn = 6'h06; // and 6'h25: alu_oprn = 6'h07; // or 6'h27: alu_oprn = 6'h08; // nor 6'h2a: alu_oprn = 6'h09; // slt default: alu_oprn = 6'hxx; endcase end // I-type and J-type else begin case (opcode) // I-type 6'h08: alu_oprn = 6'h01; // addi 6'h1d: alu_oprn = 6'h03; // muli 6'h0c: alu_oprn = 6'h06; // andi 6'h0d: alu_oprn = 6'h07; // ori 6'h0a: alu_oprn = 6'h09; // slti 6'h04: alu_oprn = 6'h02; // beq - sub 6'h05: alu_oprn = 6'h02; // bne - sub 6'h23: alu_oprn = 6'h01; // lw - add 6'h2b: alu_oprn = 6'h01; // sw - add // J-type 6'h1b: alu_oprn = 6'h02; // push - sub 6'h1c: alu_oprn = 6'h01; // pop - add default: alu_oprn = 6'hxx; endcase end // op1_sel_1 - select r1 or sp based on opcode // push or pop - sp, else r1 op1_sel_1 = opcode == 6'h1b || opcode == 6'h1c ? 1'b1 : 1'b0; // op2_sel_1 - select 1 or shamt based on alu_oprn // sll or srl - shamt, else 1 (for increments/decrements) op2_sel_1 = alu_oprn == 6'h04 || alu_oprn == 6'h05 ? 1'b1 : 1'b0; // op2_sel_2 - select imm_zx or imm_sx based on alu_oprn // logical (and, or) - imm_zx, else imm_sx; ('nor' not availble in I-type) op2_sel_2 = alu_oprn == 6'h06 || alu_oprn == 6'h07 ? 1'b0 : 1'b1; // op2_sel_3 - select op2_sel_2 or op2_sel_1 based on alu_oprn // R-type - op2_sel_1, I-type - op2_sel_2 op2_sel_3 = opcode == 6'h00 ? 1'b1 : 1'b0; // op2_sel_4 - select op2_sel_3 or r2 // I-type or shift or inc/dec - op2_sel_3, else r2 // i.e. r2 only if R-type and not shift op2_sel_4 = opcode != 6'h00 || alu_oprn == 6'h04 || alu_oprn == 6'h05 ? 1'b0 : 1'b1; end // execute - perform operation based on instruction `PROC_EXE: begin // selections // wd_sel_1 - alu_out or DATA_IN wd_sel_1 = 1'b0; // wd_sel_2 - wd_sel_1 or imm_zx_lsb // lui - imm_zx_lsb, else wd_sel_1 wd_sel_2 = opcode == 6'h0f ? 1'b1 : 1'b0; // wd_sel_3 - pc_inc or wd_sel_2 // jal - pc_inc, else wd_sel_2 wd_sel_3 = opcode == 6'h03 ? 1'b0 : 1'b1; // md_sel_1 - r1 for push, r2 for sw md_sel_1 = opcode == 6'h1b ? 1'b1 : 1'b0; end `PROC_MEM: begin // load now // push or sw - write to memory if (opcode == 6'h1b || opcode == 6'h2b) begin read = 1'b0; write = 1'b1; end else begin read = 1'b1; write = 1'b0; end end `PROC_WB: begin // loaded in previous state, set to 0 read = 1'b0; write = 1'b0; // load now pc_load = 1'b1; // write to register file if // R-type (except jr) or I-type (except beq, bne, sw) or pop or jal reg_w = (opcode == 6'h00 && funct != 6'h08) // R-type (except jr) || (opcode == 6'h08 || opcode == 6'h1d || opcode == 6'h0c || opcode == 6'h0d || opcode == 6'h0f || opcode == 6'h0a || opcode == 6'h23) // I-type (except beq, bne, sw) || (opcode == 6'h1c || opcode == 6'h03) // pop or jal ? 1'b1 : 1'b0; // selections // ma_sel_2 - load data from mem[PC] ma_sel_2 = 1'b1; // pc_sel_2 - branch if equal or not equal pc_sel_2 = (opcode == 6'h04 && ZERO) || (opcode == 6'h05 && ~ZERO) ? 1'b1 : 1'b0; end default: begin $write("@ %6dns -> ", $time); $write("STATE ", state, ": "); $write("INVALID"); print_instruction(INSTRUCTION); end endcase // TBD - assign control signals based on instruction print_instruction(INSTRUCTION); // TBD - assign READ and WRITE signals based on instruction end endmodule //------------------------------------------------------------------------------------------ // Module: PROC_SM // Output: STATE : State of the processor // // Input: CLK : Clock signal // RST : Reset signal // // INOUT: MEM_DATA : Data to be read in from or write to the memory // // Notes: - Processor continuously cycle witnin fetch, decode, execute, // memory, write back state. State values are in the prj_definition.v // // Revision History: // // Version Date Who email note //------------------------------------------------------------------------------------------ // 1.0 Sep 10, 2014 Kaushik Patra kpatra@sjsu.edu Initial creation //------------------------------------------------------------------------------------------ module PROC_SM(STATE,CLK,RST); // list of inputs input CLK, RST; // list of outputs output [2:0] STATE; reg [2:0] state_sel = 3'bxxx; always @ (negedge RST) begin // set to invalid value, so that it defaults to fetch state_sel = 3'bxxx; end // TBD - take action on each +ve edge of clock always @ (posedge CLK) begin case (state_sel) `PROC_FETCH: state_sel = `PROC_DECODE; `PROC_DECODE: state_sel = `PROC_EXE; `PROC_EXE: state_sel = `PROC_MEM; `PROC_MEM: state_sel = `PROC_WB; `PROC_WB: state_sel = `PROC_FETCH; default: state_sel = `PROC_FETCH; endcase end assign STATE = state_sel; endmodule