// Name: control_unit.v // Module: CONTROL_UNIT // Output: CTRL : Control signal for data path // READ : Memory read signal // WRITE : Memory Write signal // // Input: ZERO : Zero status from ALU // CLK : Clock signal // RST : Reset Signal // // Notes: - Control unit synchronize operations of a processor // Assign each bit of control signal to control one part of data path // // Revision History: // // Version Date Who email note //------------------------------------------------------------------------------------------ // 1.0 Sep 10, 2014 Kaushik Patra kpatra@sjsu.edu Initial creation //------------------------------------------------------------------------------------------ `include "prj_definition.v" // Control signals, same as in data_path.v `define pc_load 0 `define pc_sel_1 1 `define pc_sel_2 2 `define pc_sel_3 3 `define ir_load 4 `define r1_sel_1 5 `define reg_r 6 `define reg_w 7 `define sp_load 8 `define op1_sel_1 9 `define op2_sel_1 10 `define op2_sel_2 11 `define op2_sel_3 12 `define op2_sel_4 13 `define alu_oprn 19:14 `define ma_sel_1 20 `define ma_sel_2 21 `define md_sel_1 22 `define wd_sel_1 23 `define wd_sel_2 24 `define wd_sel_3 25 `define wa_sel_1 26 `define wa_sel_2 27 `define wa_sel_3 28 // ALU operation codes `define ALU_ADD 6'h01 `define ALU_SUB 6'h02 `define ALU_MUL 6'h03 `define ALU_SRL 6'h04 `define ALU_SLL 6'h05 `define ALU_AND 6'h06 `define ALU_OR 6'h07 `define ALU_NOR 6'h08 `define ALU_SLT 6'h09 // Instruction opcodes `define OP_RTYPE 6'h00 `define FN_ADD 6'h20 `define FN_SUB 6'h22 `define FN_MUL 6'h2c `define FN_AND 6'h24 `define FN_OR 6'h25 `define FN_NOR 6'h27 `define FN_SLT 6'h2a `define FN_SLL 6'h01 `define FN_SRL 6'h02 `define FN_JR 6'h08 `define OP_ADDI 6'h08 `define OP_MULI 6'h1d `define OP_ANDI 6'h0c `define OP_ORI 6'h0d `define OP_LUI 6'h0f `define OP_SLTI 6'h0a `define OP_BEQ 6'h04 `define OP_BNE 6'h05 `define OP_LW 6'h23 `define OP_SW 6'h2b module CONTROL_UNIT(CTRL, READ, WRITE, ZERO, INSTRUCTION, CLK, RST); // Output signals output [`CTRL_WIDTH_INDEX_LIMIT:0] CTRL; output READ, WRITE; // input signals input ZERO, CLK, RST; input [`DATA_INDEX_LIMIT:0] INSTRUCTION; task print_instruction; input [`DATA_INDEX_LIMIT:0] inst; reg [5:0] opcode2; reg [4:0] rs2; reg [4:0] rt2; reg [4:0] rd2; reg [4:0] shamt2; reg [5:0] funct2; reg [15:0] immediate2; reg [25:0] address2; begin // parse the instruction // R-type {opcode2, rs2, rt2, rd2, shamt2, funct2} = inst; // I-type {opcode2, rs2, rt2, immediate2 } = inst; // J-type {opcode2, address2} = inst; $write("@ %6dns -> [0X%08h] ", $time, inst); case(opcode2) // R-Type 6'h00 : begin case(funct2) 6'h20: $write("add r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h22: $write("sub r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h2c: $write("mul r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h24: $write("and r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h25: $write("or r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h27: $write("nor r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h2a: $write("slt r[%02d], r[%02d], r[%02d];", rd2, rs2, rt2); 6'h01: $write("sll r[%02d], r[%02d], %2d;", rd2, rs2, shamt2); 6'h02: $write("srl r[%02d], 0X%02h, r[%02d];", rd2, rs2, shamt2); 6'h08: $write("jr r[%02d];", rs2); default: begin $write(""); end endcase end // I-type 6'h08 : $write("addi r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h1d : $write("muli r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h0c : $write("andi r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h0d : $write("ori r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h0f : $write("lui r[%02d], 0X%04h;", rt2, immediate2); 6'h0a : $write("slti r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h04 : $write("beq r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h05 : $write("bne r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h23 : $write("lw r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); 6'h2b : $write("sw r[%02d], r[%02d], 0X%04h;", rt2, rs2, immediate2); // J-Type 6'h02 : $write("jmp 0X%07h;", address2); 6'h03 : $write("jal 0X%07h;", address2); 6'h1b : $write("push;"); 6'h1c : $write("pop;"); default: $write(""); endcase $write("\n"); end endtask //------------------------------------- END ---------------------------------------// reg read, write; buf (READ, read); buf (WRITE, write); reg [31:0] C; buf ctrl_buf [31:0] (CTRL, C); // Parse the instruction data reg [5:0] opcode; reg [4:0] rs; reg [4:0] rt; reg [4:0] rd; reg [4:0] shamt; reg [5:0] funct; reg [15:0] imm; reg [25:0] addr; // State machine wire [2:0] state; PROC_SM proc_sm(state, CLK, RST); // TBD - take action on each +ve edge of clock always @ (state) begin // R-type {opcode, rs, rt, rd, shamt, funct} = INSTRUCTION; // I-type {opcode, rs, rt, imm} = INSTRUCTION; // J-type {opcode, addr} = INSTRUCTION; // Print current state // $write("@ %6dns -> ", $time); // $write("STATE ", state, ": "); // case (state) // `PROC_FETCH: $write("FETCH"); // `PROC_DECODE: $write("DECODE"); // `PROC_EXE: $write("EXECUTE"); // `PROC_MEM: $write("MEMORY"); // `PROC_WB: $write("WRITE BACK"); // default: $write("INVALID"); // endcase // $write("\n"); case (state) // fetch - next instruction from memory at PC `PROC_FETCH: begin print_instruction(INSTRUCTION); // set everything in ctrl to 0 C = 32'b0; // loaded in previous state, set to 0 C[`pc_load] = 1'b0; C[`ir_load] = 1'b0; C[`sp_load] = 1'b0; C[`reg_r] = 1'b0; C[`reg_w] = 1'b0; // load now read = 1'b1; write = 1'b0; // selections // ma_sel_2 - load data from mem[PC] C[`ma_sel_1] = 1'b0; C[`ma_sel_2] = 1'b1; end // decode - parse instruction and read values from register file `PROC_DECODE: begin // loaded in previous state, set to 0 C[`sp_load] = 1'b0; read = 1'b0; // load now C[`ir_load] = 1'b1; C[`reg_r] = 1'b1; C[`reg_w] = 1'b0; // selections // r1_sel_1: push - store value of r0 at stack pointer C[`r1_sel_1] = opcode != 6'h1b ? 1'b0 : 1'b1; // wa_sel_1: R-type - write to rd, I-type - write to rt C[`wa_sel_1] = opcode == 6'h00 ? 1'b0 : 1'b1; // wa_sel_2: jal - write to r31, pop - write to r0 C[`wa_sel_2] = opcode == 6'h03 ? 1'b1 : 1'b0; // wa_sel_3: push or pop - wa_sel_2, else wa_sel_1 C[`wa_sel_3] = opcode == 6'h03 || opcode == 6'h1c ? 1'b0 : 1'b1; // jr - jump to address in register C[`pc_sel_1] = opcode == 6'h00 && funct == 6'h08 ? 1'b0 : 1'b1; // beq, bne - branch if equal or not equal // TODO: this should only be selected if the condition is met // pc_sel_2 = opcode == 6'h04 || opcode == 6'h05 ? 1'b1 : 1'b0; // jmp, jal - jump to address C[`pc_sel_3] = opcode == 6'h02 || opcode == 6'h03 ? 1'b0 : 1'b1; // alu_oprn - operation to be performed by ALU // R-type if (opcode == 6'h00) begin case (funct) 6'h20: C[`alu_oprn] = `ALU_ADD; 6'h22: C[`alu_oprn] = `ALU_SUB; 6'h2c: C[`alu_oprn] = `ALU_MUL; 6'h02: C[`alu_oprn] = `ALU_SRL; 6'h01: C[`alu_oprn] = `ALU_SLL; 6'h24: C[`alu_oprn] = `ALU_AND; 6'h25: C[`alu_oprn] = `ALU_OR; 6'h27: C[`alu_oprn] = `ALU_NOR; 6'h2a: C[`alu_oprn] = `ALU_SLT; default: C[`alu_oprn] = 6'h00; endcase end // I-type and J-type else begin case (opcode) // I-type 6'h08: C[`alu_oprn] = `ALU_ADD; // addi 6'h1d: C[`alu_oprn] = `ALU_MUL; // muli 6'h0c: C[`alu_oprn] = `ALU_AND; // andi 6'h0d: C[`alu_oprn] = `ALU_OR; // ori 6'h0a: C[`alu_oprn] = `ALU_SLT; // slti 6'h04: C[`alu_oprn] = `ALU_SUB; // beq - sub 6'h05: C[`alu_oprn] = `ALU_SUB; // bne - sub 6'h23: C[`alu_oprn] = `ALU_ADD; // lw - add 6'h2b: C[`alu_oprn] = `ALU_ADD; // sw - add // J-type 6'h1b: C[`alu_oprn] = `ALU_SUB; // push - sub 6'h1c: C[`alu_oprn] = `ALU_ADD; // pop - add default: C[`alu_oprn] = 6'h00; endcase end // op1_sel_1 - select r1 or sp based on opcode // push or pop - sp, else r1 C[`op1_sel_1] = opcode == 6'h1b || opcode == 6'h1c ? 1'b1 : 1'b0; // op2_sel_1 - select 1 or shamt based on alu_oprn // sll or srl - shamt, else 1 (for increments/decrements) C[`op2_sel_1] = C[`alu_oprn] == 6'h04 || C[`alu_oprn] == 6'h05 ? 1'b1 : 1'b0; // op2_sel_2 - select imm_zx or imm_sx based on alu_oprn // logical (and, or) - imm_zx, else imm_sx; ('nor' not availble in I-type) C[`op2_sel_2] = C[`alu_oprn] == 6'h06 || C[`alu_oprn] == 6'h07 ? 1'b0 : 1'b1; // op2_sel_3 - select op2_sel_2 or op2_sel_1 based on alu_oprn // R-type - op2_sel_1, I-type - op2_sel_2 C[`op2_sel_3] = opcode == 6'h00 ? 1'b1 : 1'b0; // op2_sel_4 - select op2_sel_3 or r2 // I-type or shift or inc/dec - op2_sel_3, else r2 // i.e. r2 only if R-type and not shift C[`op2_sel_4] = opcode != 6'h00 || C[`alu_oprn] == 6'h04 || C[`alu_oprn] == 6'h05 ? 1'b0 : 1'b1; end // execute - perform operation based on instruction `PROC_EXE: begin // loaded in previous state, set to 0 C[`ir_load] = 1'b0; // selections // wd_sel_1 - alu_out or DATA_IN C[`wd_sel_1] = 1'b0; // wd_sel_2 - wd_sel_1 or imm_zx_lsb // lui - imm_zx_lsb, else wd_sel_1 C[`wd_sel_2] = opcode == 6'h0f ? 1'b1 : 1'b0; // wd_sel_3 - pc_inc or wd_sel_2 // jal - pc_inc, else wd_sel_2 C[`wd_sel_3] = opcode == 6'h03 ? 1'b0 : 1'b1; // md_sel_1 - r1 for push, r2 for sw C[`md_sel_1] = opcode == 6'h1b ? 1'b1 : 1'b0; end `PROC_MEM: begin // load now // push or sw - write to memory if (opcode == 6'h1b || opcode == 6'h2b) begin read = 1'b0; write = 1'b1; end else begin read = 1'b1; write = 1'b0; end end `PROC_WB: begin // loaded in previous state, set to 0 read = 1'b0; write = 1'b0; // load now C[`pc_load] = 1'b1; // write to register file if // R-type (except jr) or I-type (except beq, bne, sw) or pop or jal C[`reg_w] = (opcode == 6'h00 && funct != 6'h08) // R-type (except jr) || (opcode == 6'h08 || opcode == 6'h1d || opcode == 6'h0c || opcode == 6'h0d || opcode == 6'h0f || opcode == 6'h0a || opcode == 6'h23) // I-type (except beq, bne, sw) || (opcode == 6'h1c || opcode == 6'h03) // pop or jal ? 1'b1 : 1'b0; // selections // ma_sel_2 - load data from mem[PC] C[`ma_sel_2] = 1'b1; // pc_sel_2 - branch if equal or not equal C[`pc_sel_2] = (opcode == 6'h04 && ZERO) || (opcode == 6'h05 && ~ZERO) ? 1'b1 : 1'b0; end endcase end endmodule //------------------------------------------------------------------------------------------ // Module: PROC_SM // Output: STATE : State of the processor // // Input: CLK : Clock signal // RST : Reset signal // // INOUT: MEM_DATA : Data to be read in from or write to the memory // // Notes: - Processor continuously cycle witnin fetch, decode, execute, // memory, write back state. State values are in the prj_definition.v // // Revision History: // // Version Date Who email note //------------------------------------------------------------------------------------------ // 1.0 Sep 10, 2014 Kaushik Patra kpatra@sjsu.edu Initial creation //------------------------------------------------------------------------------------------ module PROC_SM(STATE,CLK,RST); // list of inputs input CLK, RST; // list of outputs output [2:0] STATE; reg [2:0] state_sel = 3'bxxx; always @ (negedge RST) begin // set to invalid value, so that it defaults to fetch state_sel = 3'bxxx; end // TBD - take action on each +ve edge of clock always @ (posedge CLK) begin case (state_sel) `PROC_FETCH: state_sel = `PROC_DECODE; `PROC_DECODE: state_sel = `PROC_EXE; `PROC_EXE: state_sel = `PROC_MEM; `PROC_MEM: state_sel = `PROC_WB; `PROC_WB: state_sel = `PROC_FETCH; default: state_sel = `PROC_FETCH; endcase end assign STATE = state_sel; endmodule